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AIMS AND SCOPE 

Journal of the Mechanics and Physics of Solids. The Journal publishes papers reporting original 
research on the mechanics of solids. Emphasis is placed on the development of fundamental 
concepts of mechanics and novel applications of these concepts based on theoretical, experimental 
or computational approaches, drawing upon the various branches of engineering science and the 
allied areas within applied mathematics, materials science, structural engineering, applied physics 
and geophysics. The main purpose of the Journal is to foster scientific understanding of the 
processes of deformation and mechanical failure of all solid materials, both technological and 
natural, and the connections between these processes and their underlying physical mechanisms. 
In this sense, the content of the Journal should reflect the current state of the discipline in analysis, 
experimental observation and numerical simulation. In the interest of achieving this goal, authors 
are encouraged to consider the significance of their contributions for the field of mechanics and 
the implications of their results, in addition to describing the details of their work. 
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PREFACE 

The Engineering Foundation Conference on Mechanics and Physics of Layered and 
Graded Materials was held in Davos, Switzerland, 21-25 August 1995, with 86 
participants representing academic institutions as well as government and industrial 
research laboratories. The objective of the Conference was to bring together scientists 
and engineers with different backgrounds and perspectives, but with a common 
interest in layered and graded materials. The Conference began with an Overview 
session; subsequent sessions were held on Processing and Characterization, Stress and 
Microscopic Deformation, Design and Applications, Thermomechanical Defor- 
mation, Coupled Mechanical/Electrical/Magnetic Phenomena, and Fracture and 
Fatigue. The conference format consisted of formal sessions in the morning and 
evening, with the afternoons free for informal discussion and relaxation. Presentations 
were of four kinds: 11 keynote lectures, 14 invited lectures, 32 contributed lectures 
and 11 poster contributions. These Proceedings contain the text of 10 of the keynote 
lectures. 

It is a pleasure to thank the presenters for making their contributions accessible to 
participants with a wide range of backgrounds. We thank the Engineering Foundation 
and all participants for making this Conference such a pleasure to organize. Special 
thanks are due to Barbara Hickernell, Conferences Director of the Engineering 
Foundation for her invaluable assistance before, during and after the Conference, 
to Herman Bieber of the Engineering Foundation for being so helpful during the 
Conference and to Professor George Herrmann of Stanford University (and Davos, 
Switzerland) for providing local hospitality. We also thank Mr Jagi and his staff at 
the Cresta Hotel for their service and help above and beyond any call of duty. The 
result of all this was a warm and friendly atmosphere at the Conference that fostered 
scientific as well as personal interactions. 

As can be seen from the list of sponsors, support came from a variety of sources, 
and this support is much appreciated. We are grateful to Professors L. B. Freund and 
J. R. Willis for devoting an issue of the Journal of the Mechanics and Physics of Solids 
to these Proceedings. The timely publication of this volume was made possible through 
the co-operation of authors in submitting the manuscripts. 

These Proceedings provide a record of the formal part of the program. We hope 
that the interactions and collaborations that began during the Conference will serve 
as a further confirmation of its success. 

S. Suresh A. Needleman 
MIT, Cambridge, MA Brown University, Providence, RI 

Conference Co-Chairs 
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PROCESSING-MICROSTRUCTURE-PROPERTY 
RELATIONSHIPS IN GRADED MATERIALS 

B. ILSCHNER 
Department of Materials, Swiss Federal Institute of Technology, Lausanne, Switzerland 

ABSTRACT 

The desired macroscopic properties of functionally graded components depend (1) directly on the local 
composition function P(c) and (2) indirectly, because important microstructural parameters (porosity, 
grain size) that develop during processing are also strong functions of the local composition. These complex 
relationships are discussed for the case of functionally graded material (FGM) fabrication by powder 
compaction and sintering. The conclusion is that the real making of high quality graded components may 
be much more difficult than calculating an optimal composition profile P(x). 

DEFINITIONS AND INTRODUCTION 

The title of this introductory paper contains a number of terms, the precise under- 
standing of which is considered to be essential for the following contributions. A few 
definitions may, therefore, be proposed and commented. 

The term graded materials refers to solids having a well-defined geometrical shape 
(in particular, to components of technical systems), in which the characteristic com- 
positional and microstructural parameters (Pc and PJ vary systematically over the 
cross section, in one or more dimensions. Functionally graded materials (FGM) 
shall be defined as graded materials, the parameter profile P(x) of which has been 
deliberately designed and manufactured in order to optimize the functional value of 
that component. 

Compositional parameters may be of two types: first, Pc can represent a chemical 
composition within a solid solution, including ordered structures with a stoichiometric 
composition range. Second, it can designate a volume fraction cv, of species / of the 
n = 2 or > 2 phases that form a particular material; these phases are often mutually 
insoluble (such as Ni/alumina), in other cases not (WC-Co). In practical work, it is 
often difficult to distinguish between local composition changes be' that are due to 
the existence of a gradient and those, be" that are due to statistical fluctuations. 
Moreover, it is necessary to distinguish between average and local compositional 
parameters. As an example, the average porosity of a sintered gradient component 
may be 5%, while the local porosity varies between 2 and 8% within the gradient. In 
materials with polymer components, chain length and degree of reticulation are 
appropriate compositional parameters, in addition to chemical analysis. 

Microstructural parameters P^ in polycrystalline materials are obviously the grain 
size, grain or particle shape (aspect ratio), grain orientation and texture parameters, 

647 



648 B. ILSCHNER 

including alignment of precipitates as often as observed. In polymer materials, crys- 
tallinity is to be considered as an additional parameter. 

Properties comprise mechanical properties (modulus, strength, hardness, ductility, 
toughness, tribo-resistance), as well as chemical properties (resistance to corrosion, 
bio-compactibilty) and electromagnetic properties (including optical ones). As a 
general symbol for such properties, F, may be chosen. Again, as in the case of the 
compositional parameters P, one must distinguish between "global" or average values 
Fav, describing the behavior of the whole component, and local values, 7(x). 

The term processing will be used in a very general sense, incorporating all pro- 
cedures that are used to fabricate the graded material from its elemental or pre- 
alloyed constituents, as well as subsequent mechanical deformation, heat treatment, 
treatments for surface modification, or combinations of these. 

Microstructure-property relationships are playing a central role in materials science 
and engineering. In fact, they represent the major breakthrough achieved in the period 
between 1955 and 1975 when it became obvious that, while chemical composition and 
crystallinity have certainly a primary influence on the macro-properties of materials, 
the microstructural parameters follow immediately as determining factors, in par- 
ticular of the mechanical behavior. The Hall-Petch relation between grain size and 
yield strength, or the Orowan relation linking particle diameter and distance of 
precipitates to strength, are well-known examples. 

In graded materials, the definition of such relationships becomes much more com- 
plex : even though global property values Tav may well be defined (e.g. number of 
thermal shock events of a graded thermal barrier coating prior to intensive damage 
formation), they can no longer be meaningfully linked to global compositional or 
microstructural parameters. Instead, relations must be established between global 
properties and the functions P(x) describing the parameter variation over the whole 
specimen or component. While the practical task can be simplified by choosing, for 
example, a power law P(x) so that a single value of the exponent characterizes the 
function, the principal difficulty of dealing with global property values depending on 
functions of local parameters rests valid. 

This difference between macroscopically homogeneous materials and graded ones 
becomes still more pronounced if the effect of processing is considered: not only have 
processing parameters (in the interpretation of the term as discussed above) together 
with chemical composition a decisive influence on the microstructure. In addition, 
this effect varies with the location within the gradient. Even a local property value 
T(x') at one given position will be influenced, not only by the neighboring volume 
elements in the gradient, having slightly different values of Y, but also by global 
effects like residual stresses caused by the existence of the macroscopic gradient. 
The establishment of meaningful processing-microstructure-property relationships 
of graded materials is thus a task demanding detailed and elaborate study of inter- 
connected layers and their constitutive laws. 

GRADIENT OR STEP FUNCTION 

Among the numerous processes that are used for the fabrication (which is in general 
not yet going beyond laboratory scale) of graded materials, there are some that do 
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not really provide for smooth concentration gradients P(x). Rather, they generate a 
sequence of stacked layers with discrete compositional parameters Pu P,... P,„ with 
n between 3 and about 8. This observation holds in particular for powder metallurgical 
process routes; here, the stacking before sintering of several thin layers that have 
been individually thoroughly mixed and homogenized is easier than designing and 
operating more sophisticated equipment for continuous gradient formation. The latter 
may also cause a higher risk of undesired excursions from the as-planned composition 
profile. 

Likewise, in coating technology, the state of the art is characterized by one layer as 
a first step, then a bond coat layer and 1 or 2 additional interlayers, so that complex 
thermal barrier coatings with n layers are produced. These may be regarded as a 
"transient stage" on the way to the ultimate (and optimal) solution which is a 
continuously graded layer. In favor of the step function solution, which is often 
more economical, it may also be argued that the abrupt composition changes at the 
interfaces caused by the low temperature steps of the processing route will partially 
disappear by diffusion during subsequent high temperature sintering, HIP treatment, 
or service conditions. 

While this is macroscopically true, at least for solid solutions, the situation may be 
different for two-phase aggregates without solid solubility, such as particle dispersion 
reinforced alloys. Let us consider a dense bi-layer material composed of a nickel 
matrix containing a dispersion of fine alumina particles; the size distribution of these 
particles may be identical in both parts of the bi-layer, only the volume fraction and, 
hence, the mean interparticle distance, differ by, e.g. a factor of two, as in Fig. 1. In 
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Fig.  1. Two-phase double layer, negligible solubility (like Ni/Al20,), as an example for quasi-stable 
situation. 
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this case, there is practically no driving force for a diffusion process that might 
transform the step-function into a gradient, though, theoretically, there is more 
surface energy per volume element stored in the left part of the bi-layer than on the 
right-hand side. 

The second example of non-homogenization concerns monophase alloys. In the 
case of thermodynamically ideal solid solutions (or of regular solutions without 
segregation tendency), existing concentration steps are obviously unstable and will 
smoothen, sufficient diffusivity being provided, Fig. 2(a). Thereby, true gradients will 
be formed, ultimately leading to large-scale homogenization. This is not the case, 
however, if the interaction terms within the Gibbs free energy G(c) create a tendency 
for spinodal decomposition (d2G/dc2 < 0). Then, a graded transition between two 
concentration levels will form, see Fig. 2(b). This profile may be regarded as an 
extended step. The underlying principle is a balance of energies. On the one hand, the 
system tries to accommodate the bulk of atoms in low-energy positions and to restrict 
the "thermodynamic misfit" resulting from the Gibbs function to a small region, ö in 
Fig. 2(b). However, 5 will not be squeezed too much either, as this would imply 
ever increasing gradients of composition where each atomic layer faces different 
compositions in neighboring planes. As Cahn (1968) and Hilliard (1970) have shown, 
this results in a specific gradient energy term, proportional to (grad c2). 

A gradient energy term may also be of mechanical origin, due to local variations 

AG(c) (T=const) c(x) unstable c(x) stable 

c(x) 

steady state 

a 
Cu c Ni 

c(x) b2 

by/ 

c(x) 8   ' 

/r 
. X 

CuNiSn final state with gradient 

Fig. 2. Solid solution systems: stabilization of either homogeneous (a) or graded transition (b) due to 
concentration dependence of Gibbs free enthalpy, G(c). 
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of thermal contraction during cooling of a graded material. As has been frequently 
discussed in the current literature, this additional thermoelastic energy can be min- 
imized by avoiding abrupt transitions. A driving force will result, aiming at stress 
relaxation. However, this will normally take place by micromechanical processes 
(dislocation climb and glide) rather than by stress driven chemical diffusion creating 
smoother concentration gradients. 

In conclusion, abrupt concentration changes originating from processing must 
be envisaged—unlike simple phase boundaries—as being associated to composition 
profiles as soon as at least a small solubility exists. Chemical as well as mechanical 
energy terms combine with diffusion in order to replace step functions gradually by 
smooth profiles. It appears, therefore, reasonable to aim in the same direction when 
one develops process routes for making gradient materials. 

PROCESSING-MICROSTRUCTURE-PROPERTY RELATIONSHIPS; 
THE P/M ROUTE AS A CASE STUDY 

This discussion will follow a sequence of simple processing steps, the objective 
being to produce a component with a concentration profile resulting from prior 
calculations of its functional effect. 

Filling a mold with a dry powder mixture, the composition of which varies as the 
filling operation proceeds, implies several problems that will be addressed shortly. 
The process has aspects related to statistical physics even in the case of one powder 
species: falling with a certain velocity, each particle will eventually hit an already 
deposited one. Depending on the momentum transfer during primary impact, the 
arriving particle will either lose energy by pushing the "underdog" in a more stable 
position, or rebounce elastically and fall a second time. It is always being exposed to 
the probability of colliding with new particles, thus receiving subsequent impacts with 
resulting micromovements. Until a considerable number of covering layers has been 
accumulated on top of a given layer, it will be subject to statistical adjustments, with 
the "noise level" decreasing with increasing distance from the surface. 

These adjustment processes may be modeled using critical angles of the center lines 
connecting neighboring grains. However, there are geometrical as well as physical 
factors to be considered: the geometrical factor concerns the deviations of particle 
shapes from the spherical model which is often used though some powders have very 
irregular shapes indeed. The physical factor is what is often termed nano-tribology: 
the atomic forces necessary to roll or slide one submicron particle over another one, 
driven by the short impact of the next falling grain. These processes become still more 
complex when two species are being filled simultaneously, each one with its different 
size, shape, mass and tribological characteristics. It is indeed difficult to fill a mold 
layer by layer in a dynamic mixing process, trying to establish a predetermined 
composition profile, without clustering, waviness of equi-composition surfaces which 
are supposed to be planar, and other defects. 

Normally, further consolidation is being sought for by triggering local rearrange- 
ment events with the aim of obtaining higher "tapping densities". Vibrations may of 
course activate local disentanglements of grains—but again these movements are 
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subject to the statistics of contact points, free volume and micro-tribology. Clustering 
and segregation may be enhanced together with densification, so that the final micro- 
structure has a large-scale gradient, superimposed by fluctuations of considerable 
amplitude. 

Next, cold compacting by static mechanical pressure (in some cases also by shock 
waves) is used in order to confer to the specimen a certain degree of mechanical 
stability, necessary for handling before sintering. Obviously, ductile and brittle powder 
particles behave in a very different manner during this operation: the first will develop 
increasing local stresses at the extremely small interparticle contact areas, going 
beyond the yield point and thus initiating local plastic deformation. This will result, 
by itself, in a small contribution to densification. More important is the welding effect 
between grains due to combined action of shear and compressive strain. Considerable 
"green strength" may thus be achieved by cold compaction. With brittle powders, 
increasing pressure will mainly result in the initiation and propagation of microcracks 
in adjacent grains, so that liquid or wax-like binders have to be added in order to 
achieve the desired stability during handling. Consequently, in a gradient of com- 
position (in particular one involving ductile and brittle powder fractions), the effect 
of cold compaction varies considerably with the position within the composition 
profile; it depends strongly on the probability for having like or unlike neighboring 
grains—and therefore, also on fluctuations (clusters) inherited from prior processing. 
Using prealloyed powders will in most cases increase the yield strength and, thus, the 
resistance to deformation of individual grains, as much as reducing their ductility. 

Finally, the specimen is subjected to sintering; we begin by considering solid state 
sintering. The first guess is that due to thermal activation and the increased importance 
of entropy, existing local fluctuations will level off during sintering. This is not the 
case. In fact, sintering takes place at one temperature, T, which is the same in the 
whole specimen volume. On the other hand, sintering kinetics is determined by 
Arrhenius-type expressions, in which the activation energy Q(c) is a function of 
composition and, therefore, of position within the concentration gradient. In a first 
approximation, the sintering rate between two points in the gradient will therefore 
vary with an Arrhenius function controlled by the difference of the activation energies 
of the two components. This AQ can be of the same order of magnitude as the 
individual Q values, which results in a very strong dependence of the sintering rate 
on composition and, hence, a very different rate of densification in different areas of 
the graded specimen. This may either lead to large differences in porosity, or to 
different shrinking rates of different layers, finally resulting in either strong bending 
of originally flat specimens, or in crack initiation in those parts of the specimen which, 
due to their composition, shrink faster. The processing-microstructure-property 
relationship is easily recognized. 

With large differences in sintering rate due to composition gradients, it is not at all 
easy to compensate for this effect by using different powder grain sizes, carefully 
adjusted to the composition range. Moreover, this strategy demands for a new com- 
position variable (grain size in addition to composition) and, hence, more soph- 
isticated equipment and higher fabrication cost. Sintering additives are known to 
have a strong effect on the rate of densification; however, the same argument as 
before holds: they have to be added in different concentrations for each different level 
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Fig. 3. Micrograph of graded transition between CrNi alloy and partially stabilized zirconia (PSZ). 
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of alloy composition. (In addition, they may have a negative influence on mechanical 
properties of the sintered part, due to grain boundary segregation.) Another strategy 
is to start sintering at a temperature adapted to the "fastest" constituent within the 
gradient and then slowly heating, until the "slow" layers are at an efficient temperature 
level. Of course, this will often cause recrystallization and grain growth in those layers 
that had sintered at the lowest temperature level; to correct for this, grain refining 
additives may be necessary, resulting in the same complications as mentioned above. 

Liquid state sintering may be considered as very efficient, all of the necessary 
transport processes being transferred to a liquid phase that is present in all areas of 
the specimen, even in a gradient. In the manufacturing of cemented carbides of the 
type WC-Co ("hard metals"), liquid phase sintering is common industrial practice— 
for homogeneous parts. The application of this technique to graded parts is very often 
unable to yield the desired results: if, as usual, a certain degree of connected porosity 
is left in the structure at the moment when the binder phase becomes liquid, there will 
be a redistribution of the latter by capillary flow, partially or completely eliminating 
the gradient. If, as in the case of WC-Co, the solid phase has a high solubility in the 
liquid binder, an additional effect takes place: existing "bridges" between carbide 
particles, which have been formed during heating by solid state sintering, will be 
dissolved while approaching the eutectic temperature, thus weakening the cohesion 
of the whole structure. The pressure that is due to capillary forces in the porous 
structure is then able to blow up the "mushy" WC-Co structure in order to gain 
additional interface energy between solid carbide and liquid solution. Strong defor- 
mations of the geometrical shape as well as decohesions must be expected. 

CONCLUDING REMARKS 

The foregoing discussion was based on powder metallurgy and pressureless sintering 
techniques for the preparation of graded components. Similar thoughts can be pre- 
sented for other process routes. Keeping all these interferences between processing, 
microstructure and the resulting properties in mind, it appears rather surprising that 
a considerable number of industrial and academic laboratories have nevertheless 
announced successful preparation of functionally graded components of reasonable 
microstructural quality, Fig. 3, and functional values corresponding to expectations. 
These results show that, by careful selection and preparation of starting materials, 
advanced mixing and feeding techniques, judiciously planned time-temperature cycles 
and mechanical "boosters" (HIP, sinter-rolling), it is indeed possible to obtain control 
over the generally adverse micro-processes that tend to object to the building of such 
unusual species as functionally graded materials. While the considerations presented 
here point, at the one hand, to the important challenges for applied scientific research 
in this field, the already reported success encourages, on the other hand, the perfection 
of processing routes in the direction of industrial production lines: low-cost, continu- 
ous, and reliable. 
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STRESS AND GRAIN GROWTH IN THIN FILMS 

CARL V. THOMPSON and ROLAND CAREL 

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 
Cambridge, MA 02139, U.S.A. 

ABSTRACT 

The mechanical properties of polycrystalline thin films with thickness of 1 fim or less depend strongly on 
the grain geometry, the grain size, and the way in which the crystallographic orientations of the grains are 
distributed. Grain growth during film formation or during post-deposition annealing can play a dominant 
role in defining these microstructural characteristics, and therefore, the mechanical properties of films. 
Stress can suppress or promote grain growth. In the latter case, stress promotes texture evolution during 
grain growth. Grain growth can serve as a stress relief mechanism in both elastically isotropic and 
anisotropic materials, and can also promote plastic yielding. 

INTRODUCTION 

Polycrystalline thin films have highly constrained grain structures and as a result, 
they also have highly constrained, and often unusual, mechanical behavior. This 
affects the properties, performance and reliability of polycrystalline films in a wide 
variety of applications in electronic and magnetic devices and systems. In these 
applications, the term thin films is usually taken to apply to films with thicknesses of 
roughly 1 (xm or less. Films with these thicknesses often have non-equiaxed grains 
that span the thickness of the film but have in-plane sizes ranging from much smaller 
than the film thickness to much larger than the film thickness. Polycrystalline films 
also often have bimodally-distributed grain sizes. The crystallographic orientation of 
the grains in polycrystalline films are also often non-random, even when they are 
deposited on amorphous substrates. Often films are "textured", in that the grains 
tend to have specific crystallographic planes parallel to the plane of the film. 

The grain geometry, the average grain size, the grain size distribution and the 
distribution of grain orientations in polycrystalline films all strongly affect their 
mechanical as well as other properties. Specifically, the yield stress of polycrystalline 
thin films increases with decreasing grain size and film thickness, so that very thin, 
fine-grained films can have yield stresses of hundreds of MPa. This is due to specimen- 
size-induced constraints on dislocation generation mechanisms and dislocation 
motion. Also, the anisotropy of elastic properties and non-random texture of most 
films affect their elastic behavior. 

Grain growth often occurs during deposition or post-deposition processing of thin 
films. As in bulk materials, grain growth in thin films leads to an increase in the 
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average grain size. However, in thin films, grain growth also leads to an evolution in 
the distribution of grain sizes and the distribution of grain orientations. As the excess 
volume associated with grain boundaries is redistributed during grain growth, a tensile 
stress can develop. Because of their high yield stresses, polycrystalline films can 
support very high strain energy densities, which can vary from grain to grain, so that 
stress can drive the preferred growth of grain subpopulations with low strain energy 
densities. 

Grain growth can play a dominant role in defining the stress state and mechanical 
properties of films. These, in turn, affect the way in which grain growth proceeds. 
This coupling of stress and grain structure evolution in thin films is the focus of this 
paper. 

FILM FORMATION 

Most films do not wet their substrates, in that, in equilibrium, the energies of the 
film and substrate surfaces and the film-substrate interface are minimized when the 
film is in the form of an island as shown in Fig. 1. In this case, film formation initiates 
through the nucleation of islands, which then grow to cover the substrate surface and 
eventually coalesce to form a continuous film [Fig. l(b-c)]. If nucleation and growth 
are the only processes that define the average in-plane grain size d, d decreases with 
increasing nucleation rate, and increases with increasing growth rate (Thompson and 
Carel, 1995a). 

As a thin film thickens during deposition, at least three fundamentally different 
types of microstructures can develop (Mouchan and Demichisin, 1969; Thornton, 
1977; Grovenor et ai, 1984), as illustrated in Fig. 2. Refractory metals tend to have 
structures of the type shown in Fig. 2(a) when deposited at temperatures below about 
0.2-0.3 Tm (where Tm is the melting temperature in K), and structures of the type 
shown in Fig. 2(c) develop when Tdep Js Tm. Semiconductors tend to be amorphous 
when Tdep «S 0.5 Tm, and have type 2a structures when 0.5 Tm < rdep < 0.9 Tm. Face- 
centered cubic materials tend to have 2c structures when Täep > 0.2-0.3 Tm. 

In physical vapor-deposition processes (evaporative and sputter deposition), depo- 
sition is generally carried out under conditions of high supersaturation so that critical 
nuclei are small, the nucleation rate is high, and the nuclei spacing is small (Thompson 
and Carel, 1995a). These conditions might lead to the very fine grain sizes observed 
at the base of type 2a films. However, observation of type 2b structures probably 
indicates that grain boundary motion has occurred during coalescence (followed by 
expitaxial growth on the grains of the as-coalesced film). Clearly grain boundary 
motion during film coalescence and thickening plays a role in development of type 2c 
structures (Wong et ai, 1986). 

For 1 /an thick films with 2a structures, the in-plane grain size varies from at most 
a few thousand As at the top of the film, to 100 Ä or less at the film-substrate 
interface. In both the 2a and 2b structures, the grains are highly non-equiaxed and 
have a largest dimension no greater than the film thickness. Only in the case of 2c 
structures are grains relatively equiaxed with in-plane sizes, roughly as large as the 
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(a) 

zm 

(b) (C) 

Fig. 1. (a) A spherical cap-shaped particle on a substrate that it partially wets. y„ ysub, and ^ are the surface 
energies of the free surface of the particle, the surface of the substrate, and the particle-substrate interface, 
respectively. 0 is the equilibrium contact angle, (b) and (c) Top views of a film forming through nucleation 
and growth of isolated particles or islands which grow together and coalesce to form a continuous film. 

film thickness. When heated to sufficiently high temperatures, as deposited films with 
type 2a and 2b structures will evolve toward 2c structures, through a grain growth 
process that has both 3D and 2D character. 

(a) (b) (c) 

Fig. 2. Schematic cross-sectional views of possible grain structures of as-deposited thin films with thicknesses 
less than 1 /an. 
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MECHANICAL PROPERTIES OF POLYCRYSTALLINE FILMS 

Polycrystalline films are often in a state of near biaxial strain, due to their attach- 
ment to generally much thicker substrates. Because of this, the stress and strain energy 
density vary from grain to grain, depending on the crystallographic orientations or 
textures, and therefore the effective biaxial moduli, of the grains (Thompson and 
Carel, 1995; Nix, 1989). Under plane-stress conditions, for a biaxial strain of mag- 
nitude e the in-plane stress in a grain is given by 

a = Mhk,e, (1) 

and the strain energy density is given by 

Ft=[Mmy, (2) 

where Mm is the appropriate biaxial modulus, which for cubic materials can be 
determined as a function of the grain surface normal (hkl) and the stiffness constants 
(CH, C12, and CM) as (Murikami and Chaudhari, 1977) 

2(Ci2~"K) .- . 
MIM=CU+Cl2+K-   Cu+2K  . (3a) 

where 

K = (2C4A-Cu+Cl2)(h2k2+k2l2+h2l2) (3b) 

and 

tf+k2 + l2 = l. (3c) 

The magnitudes of a and FF. therefore depend on the crystallographic orientation of 
the grains and on the elastic anisotropy of the material. The latter can be quantified 
in terms of the Zener anisotropy raio, A = 2C44/(Cn-C12). For all f.c.c. metals and 
most cubic metals A is greater than one. When this is the case, M,M has a minimum 
value for (100)-textured grains and a maximum for (lll)-textured grains. 

The yield stress of a polycrystalline film depends strongly on its average in-plane 
grain size and out-of-plane grain size, the latter being the film thickness, h, or less 
(Nix, 1989; Venkatraman and Bravman, 1992; Sanchez and Artz, 1992; Thompson, 
1993). The yield stress ay increases with decreasing value of both h and d, and in 
the case of Al, has been shown to independently vary with the reciprocal of each 
(Venkatraman and Bravman, 1992), such that 

C\   ,   c2 

*>-I+T (4) 

It has been further argued that both cx and c2 can be defined for individual grains, 
and that their values depend on the texture of a grain such that <ry is high for grains 
with (lll)-texture and low for grains with (210) and (110) textures (Sanchez and 
Artz, 1992; Thompson, 1993a, b; Carel and Thompson, 1995). This orientation 
dependence is predicted based largely on the magnitude of the resolved sheer stress. 

Because of their anomalously high yield stresses, very high stresses are often mea- 
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sured in thin films. Venkatraman and Bravman (1992) measured yield stresses as high 
as 350 MPa in continuous films of pure Al, and stresses as high as 700 MPa have 
been inferred from electromigration experiments on thin film strips of Al imbedded 
in Si02 (Lloyd and Smith, 1983). Also, as will be discussed in the following section, 
Abermann and co-workers (Abermann et al, 1978; Abermann and Koch, 1985; 
Abermann, 1990, 1992), as well as other groups, have also measured intrinsic stresses 
in as-deposited films ranging up to 1 GPa in a number of materials. 

STRESSES IN THIN FILMS 

Intrinsic stress 

As-deposited films often have high intrinsic stresses. Abermann and co-workers 
(Abermann et al, 1978; Abermann and Koch, 1985; Abermann, 1990, 1992) have 
studied intrinsic stresses during and after evaporative deposition of thin films. 
Measurements were made in the deposition system by monitoring the deflection of a 
cantilever on which the films were deposited. It was found that when films were 
deposited at room temperature, their behavior could be divided into two classes, as 
illustrated for Cr and Au in Fig. 3. Cr is typical of "type I", low mobility materials, 
while Au is an example of a "type II" material (of which Ag, Cu and Al are other 
examples). Type I materials typically have microstructures such as in Fig. 2(a). High 
tensile stresses in sputter-deposited as well as evaporatively-deposited thin films of 
type I materials have been observed by many other groups, including that of Hoffman 
and Thorton (1982). Hoffman (1976) proposed that tensile stresses develop as islands 
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Fig. 3. In situ real-time measurements of stress in of Cr (type I) and Au (type II) films as a function of film 
thickness (based on Abermann and Koch, 1985). 
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coalesce, as a result of nearby islands elastically deforming to close up spaces in order 
to replace the two grain-free surfaces with one grain boundary. Nix (1994) has argued 
that the maximum strain that can result from this mechanism can be determined by 
balancing the resulting strain energy density with the change in the sum of the total 
surface and grain boundary energy. If the strain is elastically accommodated, Nix has 
shown that the resulting maximum stress is strongly dependent on the grain size at 
coalescence d0 Omax a 1/4), and that stresses of several GPa are possible when d0 ^ 100 
Ä. This seems to provide a likely explanation for the tensile stresses observed by 
Abermann and others in type I materials. 

Type II materials develop small tensile stresses as they coalesce, but this stress is 
relieved, and even appears to become compressive as the films thicken; Au provides 
an extreme example of this behavior. The relief of the "Hoffman" stress, or the failure 
to develop larger tensile stresses, is not likely to be due to plastic deformation, since, 
as discussed earlier, these films are expected to have high yield stresses. It seems more 
likely that the grain boundaries form and densify via surface and boundary atomic 
diffusion rather than by straining in these high mobility materials. The origin of the 
compressive stresses observed by Abermann and co-workers (Abermann et ai, 1978; 
Abermann and Koch, 1985; Abermann, 1990, 1992) is ascribed by Abermann to 
surface stress effects. 

Sputter-deposited thin films of type I materials can have either high tensile or 
compressive stresses, on the order of lGPa in either case (Ohring, 1992). Whether the 
stress is compressive or tensile most strongly depends on the pressure of the sputtering 
gas, with high compressive stresses usually occurring at low pressures and tensile 
stresses occurring at higher pressures. The transition occurs in the 1-10 mTorr range 
and can swing from 1 GPa compressive to 1 GPa tensile with a change of pressure of 
a few mTorr or less. Tensile stresses are likely to be due to the Hoffman mechanism. 
The origin of compressive stresses is less clear, but may be associated with shot- 
peening effects and sputtering gas incorporation (Ohring, 1992; d'Heurle, 1970). 

Extrinsic stress 

A common source for extrinsic stresses is differential thermal expansion. The biaxial 
strain resulting from differential thermal expansion of a thin film on a thick substrate 
is 

[as-ar]dT = (Ao>)(AT), (5) 

where T0 is the zero stress-temperature, 7" is the actual temperature {AT = T-T0), 
and as and <xf are the linear thermal expansion coefficients of the substrate and film, 
respectively. The strain due to differential thermal expansion can be large even for 
relatively small ATs. For example, for Al on Si (or Si covered with a thin oxide), 
af ^ 2.3 x 10"5 and as ^ 2.6 x 10~6 so that AT of 100°C results in a eth of 0.2%, or a 
stress of 50 MPa compressive for a (111) grain (M,,, = 115 GPa). 

Bending of substrates can also result in extrinsic strains and stresses. This allows 
the application of strains in films deposited on cantilevers, for example, when a force 
is applied to the unfixed end (Nix, 1989). 
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GRAIN GROWTH IN THIN FILMS 
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As discussed earlier, grain growth can play a dominant role in denning the texture 
and grain size distribution, and therefore the mechanical properties, of as-deposited 
f.c.c. metal films, and in other materials when they are deposited or annealed at 
temperatures sufficiently high to allow grain boundary motion. The current under- 
standing of grain growth in thin films will now be briefly reviewed. 

Normal grain growth 

Grain growth in bulk materials has been studied for many years and has been the 
subject of a number of reviews (Atkinson, 1988). Discussion of grain growth in bulk 
systems tends to focus on what has come to be known as normal grain growth. 
Normal grain growth is taken to be a process in which the average grain size d changes 
with time t according to 

" &Q         Cl^ (6) 

where d0 is the average grain size at t = 0 and c is time independent but strongly 
temperature dependent, such that c = c0 exp ( — Q/kT), and c0 is weakly temperature 
dependent. Normal grain growth is also characterized by a "steady state" behavior 
for which the grain size distribution function f(d) is monomodal and has a time- 
invariant shape. In normal grain growth, some grains grow and some grains shrink, 
as illustrated using a 2D computer simulation (Frost et al., 1988) in Fig. 4. The 
resulting increase in the average grain size leads to a corresponding decrease in the 
total grain boundary area. This results in a decrease in the energy of the system due 
to the reduction of the excess free energy associated with grain boundaries, which will 
be discussed in terms of the excess energy per unit area of grain boundary, ygb. For 

JJ Y         [          j^   j^            \, 

/A    \            /-(        / 

(a) (b) 
Fig. 4. Top view of a thin film undergoing normal grain growth. Large grains tend to grow larger and 
small grains tend to shrink and disappear, so that the average grain size increases over time. Output of a 

computer simulation of grain growth (Frost et al, 1988). 
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the purposes of subsequent discussion, it will be assumed that it is adequate to consider 
all boundaries as having the same energy ygb, corresponding to the average over the 
system. Relaxation of this assumption in computer simulations is discussed elsewhere 
(Hayashi et al., 1994). Normal grain growth is therefore driven by the reduction of 
the total energy associated with grain boundaries. 

When grain growth leads to evolution from the grain structures represented in Fig. 
2(a) and (b) to that of Fig. 2(c), a steady state is not obtained as the structure evolves 
from one having a fully 3D character with non-equiaxed grains to one with a quasi- 
2D structure as shown in the cross-section in Fig. 2(c), and as shown in top and 
perspective views in Figs 4 and 5, respectively. Once a quasi-2D structure develops, 
subsequent grain growth occurs primarily via grain boundary motion in directions 
lying in the plane of the film. In this case, steady state conditions and normal grain 
growth could in principle occur, and the energy change associated with a change in 
average in-plane grain size from d0 to d would be 

AF„, 
_2__2' 
d0     df 

(7) 

and (6) is expected to be obeyed. In a 2D system, grain growth can be modeled and 
simulated by considering local motion of boundaries with in-plane velocities v normal 
to the grain boundary, and proportional to the local in-plane curvature K, such that 

v = mygbK, (8) 

where m is the grain boundary mobility and has a temperature dependence given by 
m = m0exp(-Q/kT). The simulation used to generate Fig. 4 was based on incremen- 
tal application of this law to points on boundaries, along with application of force 

Fig. 5. Schematic perspective view of the grain structure of a film with equiaxed grains, and with most 
boundaries intersecting both surfaces of the film. 
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balances at grain boundary triple junctions in each time increment (Frost et al, 1988). 
The resulting simulation obeys (6) [with d = (4A/n)lß and A = the in-plane grain 
area] and otherwise has the characteristics of normal grain growth. 

Abnormal grain growth 

While 2D normal grain growth is readily modeled and simulated and films with 
structures such as in Fig. 4 are attractive candidates for testing such models, normal 
grain growth rarely occurs even in films with equiaxed quasi-2D structures. There are 
two reasons for this: 

(i) phenomena leading to grain boundary drag usually prevent steady state growth 
(or even lead to complete grain growth stagnation), and 

(ii) there are almost always grain-orientation-specific driving forces for grain 
growth that favor subpopulations of grains and prevent steady state behavior 
until all favored grains are eliminated. 

In both cases, the grain growth that occurs is considered abnormal grain growth. 
A common source of grain boundary drag is the formation of grooves where grain 

boundaries intersect the surfaces of the film. Mullins (1958) has argued that if grain 
growth is driven by the elimination of grain boundary energy alone, groove formation 
can result in grain growth stagnation when the average in-plane size is approximately 
equal to the film thickness, d^h,a.s had often been observed in metallic sheet (Beck 
et al., 1948), and as has subsequently been observed in thin films (Thompson, 1990). 
This result has also been obtained when 2D grain growth simulations are modified to 
allow for groove-induced stagnation (Frost et al., 1988). Simulations have also shown 
that grain-boundary-groove-induced stagnation leads to lognormal grain size dis- 
tributions, as is also often observed in thin films (Thompson, 1990; Frost et al., 1990; 
Palmer et al., 1987; Tracy et al, 1988; Wu et al, 1991). Solute drag has also been 
shown (Frost et al, 1992) to result in transient, though persistent, lognormal grain 
size distributions. 

Grain-orientation-specific driving forces for grain growth can arise from several 
sources. Thin films are not two-dimensional, and therefore have top and bottom 
surfaces that also have excess free energies per unit area, ys. For a film on a substrate, 
the bottom interface will have an excess energy per unit area, yt. Both ys (the energy 
of the free surface) and y{ depend strongly on the orientation of a grain with respect 
to the plane of the film. For example, for f.c.c. metals on amorphous substrates (e.g. 
on oxidized Si), it is expected that both yx and ys are minimized for grains with (111) 
texture. This means that growth of grains with (111) texture is generally favored over 
growth of grains with other orientations. This can result in the development of 
bimodal grain size distributions (Frost et al, 1992), as illustrated in Fig. 6(a), in 
which the large grains have ys and y{ minimizing orientations. Eventually these grains 
will consume all other grains, resulting in a population of grains with a monomodal 
size distribution, but with highly restricted textures (Thompson, 1990). 

Mullins (1958) argued that if the surface energies for grains meeting at a boundary 
are sufficiently different, the boundary can avoid groove-induced stagnation. In this 
case, low ys and y{ grains can grow at the expense of an otherwise stagnant matrix of 
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(a) (b) 
Fig. 6. (a) In abnormal and secondary grain growth, growth of a subpopulation of grains is favored so 
that bimodal grain sizes can develop, (b) Favored grains eventually consume unfavored grains, leading to 
large grains with monomodally distributed sizes. These figures are a result of computer simulations (Frost 

eta!., 1992). 

grains with other orientations. This mode of grain growth is often referred to as 
secondary grain growth (Thompson, 1985; Thompson, 1990). Stagnation of the 
matrix can result from groove formation or as a result of the presence of precipitates. 
Secondary grain growth can lead to striking examples of bimodally distributed grain 
sizes, in which the favored grains grow to sizes that can be many times the film 
thickness. For example, precipitate-induced secondary grain growth has been 
observed to lead to grain sizes as large as 1 mm in 1 fim thick Al films (Gangulee and 
d'Heule, 1972; Longworth and Thompson, 1991). 

The change in energy associated with grain-growth-induced reductions in the aver- 
age surface and interface energy of a film, ys and y{, respectively, can be shown to be 
given by 

AFS 
Ay 

s/i (9a) 

where 

Ay = [ys-(7s)o]-[7i-(ri)o], (9b) 

and where y and (y)0 are the final and initial average energies, respectively (Thompson, 
1992; Thompson and Carel, 1995). Because AFs/i is an energy per volume, the relative 
contribution of AFs/i to the total enery change accompanying grain growth is higher 
for thinner films. The effects of surface and interface energy minimization on grain 
growth and texture evolution are therefore strongest in very thin films. 

Surface and interface energy minimization has been shown to lead to abnormal or 
secondary grain growth and texture evolution in a large number and wide variety of 
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experimental systems (Thompson, 1990; Carel and Thompson, 1995). Surface and 
interface-energy-driven abnormal or secondary grain growth in free-standing poly- 
crystalline films or films on amorphous substrates leads to dominance of grains with 
uniform or restricted textures, but with otherwise random orientations with respect 
to rotations around film normals. Grain growth in polycrystalline films on single 
crystal substrates can lead to epitaxial grain growth in which the dominating grains 
have three-dimensionally constrained, epitaxial orientations (Thompson et al, 1990). 

STRESS AND GRAIN GROWTH IN THIN FILMS 

"Densification" 

Grain boundaries have an excess free volume per unit area, ha, when compared to 
single crystal material [for f.c.c. metals, Aa ~ 1 A, Frost et al. (1982)]. As grains 
grow, this free volume is redistributed. In thin films attached to thick substrates and 
having high-traction interfaces, this results in a biaxial strain given by 

£d = Aa(-,-il- (10) 
d    dc 

(Note that this expression differs by a factor of 2 from that given by Doerner and Nix 
(1988), but its derivation is very similar to the one given by them, except that the 
value taken for the excess volume per grain is halved, to account for grain boundary 
sharing.) The "densification" strain can be quite high, depending strongly on d0 which 
can again be taken to be the grain size when film coalescence occurs. If this strain is 
elastically accommodated, grain growth can therefore lead to a significant change in 
the average energy density, 

AFd = Mei (11) 

where M is the average biaxial modulus that for now is assumed not to change during 
grain growth. As first pointed out by Chaudhari (1971), for sufficiently small d0, AFd 

can exceed AF„b so that there is a limiting grain size d*, as illustrated in Fig. 7(a). 
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Fig. 7. (a) If the initial grain radius r0 (r0 = d0/2) is less than about 20 Ä, above r*, the strain energy density 
due to "densification" will exceed the energy decrease due to reduction of the total grain boundary energy. 

(b) For larger r0s, strain will not stop grain growth and large strain energy densities can develop. 
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Fig. 8. Strain resulting from grain-boundary-energy-driven grain growth, as a function of two initial grain 

sizes. 

However, this is only the case if d0 < 40 Ä. Otherwise, as shown in Fig. 7(b), the 
energy driving grain growth (AFs/i as well as AFgb) is high enough to overcome high 
changes in strain energy densities so that grain growth proceeds, leading to increased 
and potentially high strains (Fig. 8). 

Strain-energy-driven abnormal grain growth 

A more general form of (11) is 

AFE=(M-M0)s
2, 

where 

8 = Bth + Ed + e,, 

and where 8j is the intrinsic stress and eth is taken to be 

Sth  — (as-af)dr, 

(12a) 

(12b) 

(12c) 

with Tdep being the deposition temperature and Tge being the temperature at which 
grain growth occurs; and where M and M0 are the average effective biaxial moduli 
after and before grain growth. This expression allows for the fact that as texture 
evolves during grain growth, M will change (Floro et ai, 1994; Thompson and Carel, 
1995a). In this case, the change in strain energy density can drive grain growth, but 
specifically favors the growth of grains with low Mhk, orientations, i.e. for f.c.c. 
metals, grains with (100) texture. Strain energy minimization, therefore, provides an 
orientation-specific driving force that can cause abnormal or secondary grain growth 
and texture evolution, just as surface and interface energy minimization does (Floro 
et al, 1994; Carel et ai, 1994; Carel and Thompson, 1995; Thompson and Carel, 
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1995a). However, elastic strain energy minimization generally does not lead to the 
same texture as surface and interface energy minimization, so that AFs/i and AFC 

compete in defining the final texture resulting from grain growth. 
If we restrict our discussion to f.c.c. metals ("type II" materials) s, is expected to 

be small, and d0 is relatively large, so that ed is small as well. In this case, 

AFE^(AM)si, (13) 

where AM = M—M0. For f.c.c. metals on amorphous substrates, we expect (100) 
strain-energy-minimizing textures to dominate when AFS > AFs/i, and (111) surface 
and interface energy minimizing textures to dominate otherwise. This allows pre- 
diction of a "texture map" (Carel and Thompson, 1995; Thompson and Carel, 1995), 
as illustrated in Fig. 9, where the transition from (111) to (100) texture as a function 
of A T = 7gg — Tdep and the film thickness h, is found by setting AFe = AFs/i, or requiring 
that 

AM(AaAJ)2 s 
Ay 

(14) 

where Ay and AM are defined in terms of the difference for (111) and (100) grains. 
This expected behavior has been confirmed in a variety of systems, including Ag films 
undergoing grain growth on both single crystal substrates (Floro et al., 1994) and 
amorphous substrate (Carel and Thompson, 1995; Thompson and Carel, 1995b), as 
shown in Fig. 10(a) and (b). This behavior is also quantitatively consistent with more 
detailed simulations of grain growth that are based on modifications of the 2D 
simulation discussed earlier (Carel et al, 1994). Differences in strain energy density 
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Fig. 9. A texture map for the texture resulting from grain growth at temperatures Tge in films of thickness 
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670 CARL V. THOMPSON and ROLAND CAREL 

can therefore be seen to drive grain growth and texture evolution in some cases, and 
oppose grain growth in others. When strain-energy-density-minimization dominates 
over surface- and interface-energy-minimization, grain growth can be a strain relief 
mechanism. 

The effects of yielding 

In the discussion so far, it has been assumed that the yield stresses of all the grains 
are sufficiently high that thermal strains are elastically accommodated. However, if 
grain growth continues, the yield stress of individual grains will decrease so that their 
advantage will diminish and eventually disappear. Therefore, even at high AT, surface 
and interface energy minimization will eventually dominate in the latter stages of 
growth, assuming that grain growth stagnation does not "lock-in" strain-energy- 
minimizing orientations. 

It should be noted that as discussed previously, grains with (110) or (210) orien- 
tation are expected to have lower yield stresses than (111) or (100) grains, so that, for 
grains of equal initial sizes, (110) grains will yield before (100) or (111) grains, and 
may therefore have an energetic advantage for further growth. Yielding therefore 
favors the growth of low yield stress grains. This can lead to strain energy minimizing 
textures other than (100), even in nearly elastically isotropic materials (Sanchez and 
Artz, 1992; Thompson, 1993b), as has been suggested as an explanation for obser- 
vation of (110) textures resulting from precipitate-induced secondary grain growth in 
Al alloys at anomalously high Tggs. Again, strain energy minimization associated with 
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Fig. 10. (a) An experimental texture map for polycrystalline Ag films deposited and annealed on single 
crystal (100)Ni films on (100)Ag on (100)MgO. The line is calculated based on known values of Ay and 
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1995; Thompson and Carel, 1995b). (b) An experimental texture map for polycrystalline Ag films deposited 
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1995b). 
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yielding of a subpopulation of grains can drive grain growth, so that grain growth 
can be a strain-relief mechanism, and, in this case, assist yielding. 

SUMMARY AND CONCLUSIONS 

In polycrystalline thin films, the grain size perpendicular to the plane of the film is 
similar to the film thickness. However, the in-plane grain sizes can be much smaller 
than the film thickness, e.g. when refractory materials are deposited at or near room 
temperature; can be comparable to the film thickness (e.g. in as-deposited f.c.c. 
metals); or can be many times the film thickness, when abnormal or secondary grain 
growth occurs during film formation or as a result of post-deposition annealing. 

Both the small grain sizes and the small thickness of polycrystalline thin films 
constrain yielding mechanisms and lead to very high yield stresses up to the order of 
GPas. As a result, thin films can, and do, support very high intrinsic and extrinsic 
stresses. Intrinsic tensile stresses of order 1 GPa can develop during evaporative or 
sputter deposition of low mobility materials (refractory materials at or near room 
temperature). Intrinsic compressive stresses of order 1 GPa can develop during sputter 
deposition of low mobility materials. High mobility materials (e.g. pure f.c.c. metals) 
tend to have low intrinsic stresses when deposited at or near room temperature, but 
can support high extrinsic stresses. 

Grain growth can play a dominant role in defining the grain size and texture of as- 
deposited films of high mobility materials, and of annealed films of any polycrystalline 
material. Grain growth in films is almost always abnormal, in that growth of sub- 
populations of grains with specific crystallographic orientations is favored either by 
surface- and interface-energy-minimization or by strain-energy-density-minimization. 
This often leads to bimodal grain size distributions, and also leads to texture evolution 
during grain growth. Strain-energy-minimizing textures are favored when films are 
deposited at temperatures well below grain growth temperatures and in thicker films. 
Surface and interface energy minimizing textures are favored at low strains and in 
thinner films. 

Because there is excess free volume associated with grain boundaries, grain growth 
can lead to the development of a tensile strain, the final magnitude of which increases 
sharply with decreasing initial grain size. Because strains in films are generally biaxial, 
they lead to grain-to-grain differences in strain energy densities in elastically aniso- 
tropic materials, as well as in isotropic materials in which yielding has occurred. These 
differences can drive or suppress grain growth depending on whether or not strain- 
energy-density-minimization dominates over surface- and interface-energy-mini- 
mization. When differences in strain energy densities dominate in driving grain growth, 
grain growth can provide a mechanism for stress relief and can promote plastic 
yielding. 

Because of the strong dependence of grain growth behavior on mechanical proper- 
ties and the dependence of mechanical properties on microstructure, grain structure 
evolution, mechanical properties and mechanical deformation are highly coupled in 
thin films. 
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SUBSTRATE CURVATURE RESULTING FROM THE 
CAPILLARY FORCES OF A LIQUID DROP 

FRANS SPAEPEN 

Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A. 

ABSTRACT 

The difference between interfacial tension and interface stress is illustrated by considering a hemispherical 
liquid drop on a solid substrate. The equilibrium shape is determined by minimizing the total interfacial 
free energy, which leads to the Young equation for balance of the interfacial tensions. The curvature of 
the substrate is determined by the interfacial stresses. Two contributions are calculated: one arising from 
the hydrostatic pressure in the drop, the other from the imbalance of the interfacial stresses. 

INTRODUCTION 

The surface of a solid (or the interface between a solid and a fluid) is characterized 
by two thermodynamic quantities (Gibbs, 1906; Shuttleworth, 1950; Herring, 1951; 
Cahn, 1980; Cammarata, 1994): the surface (or interfacial) tension, y, which is a 
scalar equal to the work required to create a unit area of new interface at constant 
strain in the solid, and the surface (or interface) stress, ftj, which is 2 x 2 tensor such 
that the surface work required to strain a unit surface elastically by da,y is/7de,7.t 

The following argument, due to Shuttleworth (1950) and illustrated in Fig. 1, shows 
the relation between the two quantities. Splitting a strain-free solid in two parts (I -> 
II) creates two new surfaces of area A, and requires an amount of work 2Ay. Straining 
the two parts by de,7 (II -> IV) requires d Wbu]k to strain the bulk solids (as for I ->• III) 
and lAfijdSjj to strain the two surfaces. Splitting the strained solid into the same two 
parts (III -> IV) creates two new (strained) surfaces of area A + dA = ,4(l+de,7), 
and requires an amount of work 2A(deiJ)y(deiJ) = 2Ay + 2d(Ay). The first law of 
thermodynamics now demands 

Af.ds^diyA). (1) 

Since 

d(yA) = Ady + ydA = Ady + yA ds,7, (2) 

(1) becomes 

t There is no uniformity in the nomenclature for the two quantities. Some authors refer to the surface 
tension, as defined here, as the surface energy or free energy, or to the surface stress, as defined here, as the 
surface tension. The nomenclature used here is common at the present time, but not unique. 
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e«,-=o 

£,;=0 

\dWmk+2Afi,dzij 

dEu 

d£ij 

A(l +dfy) 

Fig  1. Transformations in the derivation of the relation between the surface tension, y, and the surface 
stress, f,j. After Shuttleworth (1950). 

dy 
(3) 

The first term on the right-hand side simply reflects the change in the Eulerian area 
of the surface. The second term arises from the presence between the atoms at or near 
the surface of forces that are different from those in the bulk. For fluid surfaces or 
fluid-fluid interfaces this second term is zero, since no elastic shear stresses can be 
applied. In that case /is identical to y. If a solid phase is present, the elements of/y 

can be quite different from y; even their sign, unlike that of y, which is always positive 
for stable interfaces, is not a priori known. Note that even though/is called a "stress", 
it has the same dimensions as y, i.e. force per length (not force per area). 

To illustrate the importance of the difference between the two quantities, the 
curvature of a substrate as a result of the presence of a liquid drop placed on it is 
calculated. It will be shown that the shape of the drop is determined by the balance 
of the surface and interface tensions, yab. The elastic curvature of the substrate, 
however, results from the forces exerted by the surfaces and interface, and hence from 
the surface and interface stresses, /ab. 

Figure 2 shows the droplet on a solid surface, surrounded by a vapor phase. 
For simplicity, the problem is kept two-dimensional (i.e. a cylindrical droplet, with 
quantities computed per unit length perpendicular to the page). Associated with the 
three types of interfaces are the tensions yiv, ysv, and ysi, and the stresses^ (= yiv),/sv and 
/sl (corresponding to the only applicable strain, e„, in the direction of the interface). To 
avoid complications from surface segregation, the three phases consist of the same 
single element. This problem is also of interest for the analysis of in situ curvature 
measurements during the early stages of condensation experiments. 
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vapor 

solid 
substrate 

Fig. 2. Diagram of the droplet on the substrate, indicating the relevant interfaces and quantities. 

EQUILIBRIUM SHAPE OF THE DROPLET 

Consistent with yiv being isotropic, the liquid-vapor interface is considered semi- 
circular, with radius of curvature R. Let the angle between the radii to the end points, 
OA and OB, be 20. The equilibrium shape of the droplet of a given volume is 
determined by the minimum in the free energy of the system with respect to 0 or R. 
Placing the droplet on the substrate replaces solid-vapor interface by solid-liquid 
interface over an area Ash and creates an area Aw of liquid-vapor interface. The 
associated changes in free energy are 

AF=^sl(ysl-ysv) + ^lvylv, (4) 

or, from the geometry of Fig. 2 

AF = 2R sin 0(yA - ysv) + 29Ry]v. (5) 

To minimize this free energy at constant volume V = R2 (0—sin 0 cos 0), a Lagrange 
multiplier, X, is introduced 

F=2R sin 0(ysl - ysv) + 29Rylv + XR2(9- sin 0 cos 0) 

Minimization gives the conditions 

dF 

dR 

dF 

50 

Equating XR found from both equations gives 

= 2 sin 0(ysl - ysv) + 26ylv + 2XR{9 - sin 0 cos 0) = 0, 

= 2R cos 0(ysl - ysv) + 2Rylv + XR2 (1 - cos2 0 + sin2 0) = 0. 

(6) 

(7a) 

(7b) 
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,„    (ysi-rSv)cos0+ylv     (ysl-ysv)sin0 + ylv0 
— äR = T^TT; = 7, ^ a ■ W sin 0 0 —sm0cos0 

Putting the last equality on a common denominator gives for the numerators, after 
dividing by ylv and collecting terms in 0 to one side 

]'sl ~ 7sv cos 0 - sin2 9 + 1 )= sin 0 cos 0 + ^^ sin 0 cos2 0 + ^^ sin3 0, 
yiv ) iv riv 

(9) 

or, simplifying the trigonometric functions 

0cos0(^^+cos0Vsm0p!lZ^+cos0). (10) 

Equation (10) can only be satisfied in two ways: 0 = 0 (complete wetting, which 
requires ysi + yiv < ysv, or, more interestingly 

cos0=-y-^^-, (11) 

which is the well-known equation of Young for the equilibrium wetting angle, 0. This 
scalar equation has an equally well-known vector representation, shown in Fig. 3. 
Although in this diagram the interfacial tensions are formally represented as vectors 
that are horizontally equilibrated, it should be kept in mind that these vectors are not 
forces. The formal equilibration at A simply arises from requirement that the change 
in total interfacial free energy upon a virtual displacement of A (horizontal—the only 
possible direction consistent with the problem) to be zero (Herring, 1951). 

Insertion of (11) into (8) gives the value of the Lagrange multiplier in equilibrium 

1=-^, (12) 

which is the pressure difference between the liquid and vapor across the curved 
interface, as discussed below. 

hi y A 
hv 

Fig. 3. Vector diagram showing the horizontal balance of the interfacial tensions that yields the wetting 
angle, 8. 
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P 

4=4    N* \ "    /dQ/   4=4 
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Fig. 4. Portion of the liquid-vapor interface, indicating the relevant quantities for Laplace's calculation of 
the pressure difference between liquid and vapor. 

CURVATURE OF THE SUBSTRATE 

Having established the shape of the droplet from the relation between the tensions, 
we can now consider the strains in the substrate that result from the forces exerted by 
the droplet and its interfaces. Since the displacements under consideration here are 
elastic ones, the interfacial stresses are the relevant quantities. 

The stress inside the droplet is hydrostatic. The pressure exceeds that in the vapor 
by Ap, which is found by the well-known Laplace force equilibrium, illustrated in Fig. 
4 on a small portion of the liquid surface. The component of the force normal to the 
surface is balanced by the components offlv in that direction: 

2Rd6Ap = 2fud0, 

or, since for the liquid fh = ylv 

Ap = 
R 

(13) 

(14) 

A free body diagram of the vertical forces on the substrate is shown in Fig. 5. The 

if 4 4* F=y;vsin9 

/^ I I I I I I I I \ C\ 

F=Y,vsin8 

L = 2R sin9 

Fig. 5. Free body diagram of the substrate with the vertical capillary forces. 
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vertical components of the capillary forces, 2ylvsin0, spaced a distance L = 2Rsin6 
apart, are balanced by the force from the hydrostatic pressure Ap 27? sin 0. The 
substrate curvature resulting from this load is estimated using simple beam bending, 
with a strain that varies linearly through the thickness. It can be used if the thickness 
of the substrate, t, is less than L. Left and right of the droplet the curvature is zero. 
Under the droplet, the curvature varies, being maximum in the middle, and going to 
zero at the ends. We are interested in calculating an average curvature, since that is 
the one measured in condensation experiments. Standard balancing of forces and 
moments gives for the strain in the top surface 

6Fx/x 

~EJ[L~ 
e0(x) (15) 

where E is Young's modulus of the substrate. The total elongation of the top fiber is 
then 

AL = 
,L FL2 

s0(x)dx = -~=j: 
Er 

which translates into an average curvature of 

2AL _     2FL _ 
K,   = 

4ylvR sin2 0 

t3E 

(16) 

(17) 

The free body diagram for the horizontal forces on the substrate is shown in Fig. 
6. When balancing forces for the system to one side of a cut AA', the capillary 
contributions are: the horizontal component of the liquid-vapor interfacial tension, 
ylvcos0, the interface stress /sl from the solid-liquid interface at the top, and the 
interface stress fsv from the solid-vapor interface at the bottom. The interface stress 
at the bottom is taken the same as that at the top-vapor interface; otherwise the 
substrate outside the droplet would have a net curvature. 

The curvature under droplet is constant in this case, and is obtained directly 

* 

.4. 
Y/v cose       j/s/ 

(SL^. 

A' 

\% 

-< 1—A- 
Y;vcos9 

Fig. 6. Free body diagram of the substrate with the horizontal capillary forces. 
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from the well-known Stoney equation (Nix, 1989), which applies exactly for the 
infinitesimally thin surfaces in which the forces on either side of the substrate act 

6(/5v-/5i-y5iCosö) 
K2= j-E . (18) 

Note that having fsv acting at the bottom is equivalent to having —/sv acting at the 
top. This contribution to the curvature is an essential result of the action of interface 
stresses insteads of tensions. The factor in parentheses would be zero by the Young 
equation, (11), if interfacial tensions were used. 

ACKNOWLEDGEMENTS 

I thank John Hutchinson for several useful discussions. This work has been supported 
by the National Science Foundation through the Harvard Materials Research Science and 
Engineering Center under contract number DMR 94-00396, and by the Office of Naval 
Research under contract number N00014-91-J-1281. 

REFERENCES 

Cahn, J. W. (1980) Surface stress and the chemical equilibrium of small crystals—I. The case 
of the isotropic surface. Ada Metall. 28, 1333-1338. 

Cammarata, R. C. (1994) Surface and interface stress effects in thin films. Prog. Surf. Sei. 46, 
1-38. 

Gibbs, J. W. (1906) The Scientific Papers of J. Willard Gibbs, Vol. I, p. 55. Longmans-Green, 
London. 

Herring, C. (1951) Surface tension as a motivation for sintering. The Physics of Powder 
Metallurgy (ed. W. E. Kington), pp. 143-179. McGraw-Hill, New York. 

Nix, W. D. (1989) Mechanical Properties of thin films. Met. Trans. A 20, 2217-2245. 
Shuttleworth, R. (1950) The surface tension of solids. Proc. Phys. Soc. London A63, 444-457. 



J. Mech. Phys. Solids, Vol. 44, No. 5, pp. 683-721, 1996 
Copyright © 1996 Elsevier Science Ltd 

Fergamon Printed in Great Britain. All rights reserved 
0022-5096/96 $15.00 + 0.00 

PII S0022-5096(96)000006-3 

SMALL AND LARGE DEFORMATION OF THICK AND 
THIN-FILM MULTI-LAYERS: EFFECTS OF LAYER 
GEOMETRY, PLASTICITY AND COMPOSITIONAL 

GRADIENTS 

M. FINOT and S. SURESH 
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, U.S.A. 

ABSTRACT 

The thermomechanical response of multi-layered materials subjected to small and large deformation during 
temperature excursions is examined in this paper. General bilayer and trilayer plates with comparable layer 
thicknesses, as well as the limiting cases of thin films on thicker substrates with and without compositionally 
graded interfaces are examined, all within the context of the classical Kirchoff theory for thin plates. Closed- 
form analytical formulations for small elastic deformation are presented whereby explicit expressions for 
stress/curvature relations are obtained for any general bilayer or graded trilayer with isotropic elastic 
properties, but anisotropic strains. The effects of the variation of Poisson ratio through the thickness of 
layered and compositionally graded materials on the evolution of multiple curvatures are analyzed. New 
theoretical results are presented on the effects of layer geometry, plastic flow and compositional gradation 
on large deformation (small strains and small rotations) in bilayer and trilayer systems comprising thick 
or thin-film layers. It is shown that the small deformation theory predictions for the generalized plane 
strain state provide an upper bound for curvature evolution among all the cases considered. By recourse 
to analytical methods and three-dimensional finite element modeling involving shell elements, particular 
attention is devoted to the occurrence of bifurcation in the solution for curvature evolution and the 
associated geometry changes in the thermoelastoplastic response of layered materials during thermal 
excursions. The model systems chosen for analyses include Ni-Al203 layers with a sharp or compositionally 
graded interfaces, Al/Si thin-film bilayers and a compositionally graded interlayer sandwiched between 
layers in In012Ga0 8gAs and GaAs for applications in microelectronics and optoelectronics, and a carbon/ 
epoxy laminated composite. 

NOTATION 

a Half thickness of the graded layer 
ä Non-dimensional thickness ( = 2a//?2) 
a Coefficient of thermal expansion 
[A, B, D] Reduced stiffness matrices of the layered plate 
[C] Relation between the applied moments/loads and the curvatures of the plate 
yxv Shear strain 
&yxy Mismatch shear strain between two layers 
As Mismatch normal strain between two layers 
AT Temperature change from a stress-free state 
A T Normalized temperature change 
AT, Critical temperature change to induce plasticity as defined in Suresh et al. (1994) 
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ATb Critical temperature change for bifurcation 
8° Strain at z = 0 
exx, evy Normal strains in the x and y direction 
sm Mean normal strain 
[E] Relation between the strain mismatch, Äe, and the overall strain at z = 0 
E{!) Young's modulus of layer (z) 
Ebi Biaxial modulus equal to E/(l — v) 
EBi Ratio of the biaxial moduli of layer 1 and layer 2 
h(i) Thickness of layer (z) 
k Normalized curvature for small deformation (= KX) 
Ki Curvature at the critical temperature variation, ATt 
Kb Critical curvature for bifurcation 
X Characteristic length equal to {hx + A2}3/6AIA2 
[M] Matrix relating the mismatch strain, As, to the normalized curvature, k 
M Resultant moments on the plate with respect to the plane z = 0 
p(i) Shear modulus of layer (?) 
ß Ratio of the shear moduli of layer 1 and layer 2 
N Resultant forces on the plate 
vw Poisson's ratio of layer (z) 
vK Coupling effect between the curvatures in the x and y directions 
p Ratio of the thicknesses of layer 1 and layer 2 ( = hl/h2) 
pa Non-dimensional thickness of the graded layer (= 2a/(h, + h2)) 
[S] Stiffness matrix of each layer 
ax„ ayy In-plane stresses in the x and y directions 
[2(z)] Matrix relating to the curvatures, k, to the stress, o(z) 
x Shear stress 
q Vectorial notation of a tensor of order 2, q, (qx„ qyy, qxy) such as K, S, a and a 

Variable depending on the inelastic strain 
Mean value of the tensor q equal to (qxx + qyy)/2 

inel 

1.    INTRODUCTION AND OVERVIEW 

The mechanics and micromechanics of the evolution of thermal stresses, plastic 
strains, geometry changes (including bending and stretch/contraction), instability 
and failure in multi-layered materials are of considerable interest in a wide variety 
of engineering applications. Examples include ceramic thermal-barrier coatings on 
metallic substrates, passivation and metallization thin films on Si substrates in micro- 
electronic devices, thin-film coatings used in magnetic storage devices, inorganic or 
organic composite laminates used in load-bearing structures, and ceramic/metal 
multi-layer stacks of controlled porosity and compositional gradation in solid oxide 
fuel cells. 

1.1.    Elastic response 

Stresses and deformation in multi-layered plates are commonly analyzed by 
recourse to linear models within the context of classical beam or plate theories. In 
this approach, which is predicated upon small deformation analyses, the following 
assumptions are usually invoked: (i) the through-thickness stresses within all the 
layers are small compared to the in-plane stresses, and out-of-plane deflections are 
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small compared to the plate thickness, (ii) the displacements vary continuously across 
the layers, (iii) the normals to the interfaces remain undeformed during thermo- 
mechanical deformation, (iv) the strains vary linearly with displacements, and (v) the 
size of the region in which multi-axial stresses prevail (i.e. very close to the free edges) 
is small compared to the in-plane dimensions. Extensions and modifications of the 
small deformation elasticity theory to account for the deformation of "thick" multi- 
layers including thick, orthotropic laminates (e.g. Timoshenko and Woinowsky- 
Krieger, 1959) and for the stresses near free edges (e.g. Bogy, 1971) have been 
reported. 

The small deformation theory is adequate for determining the through-thickness 
fields for many applications. There also exist, however, a number of practical situ- 
ations where large elastic deformations, which are accompanied by marked geometry 
changes, occur. An example of this phenomenon is the curling of unsymmetric lami- 
nates of reinforced plastics, thin-film/substrate systems (e.g. Ta film on polycarbonate 
substrate with use in microelectronic and optical applications), and unsymmetric 
laminated tapes of sintered ceramics. In addition, curvature measurements, which are 
widely used to assess thermal stresses in thin films on substrates, can be made with 
enhanced precision if the experimental conditions are designed to promote large 
rotations. 

The subject of large rotations of elastic laminates has received increasing attention 
within the past 15 years. Hyer (1981a, b, 1982), Harper and Wu (1990), Masters 
and Salamon (1993, 1994) and Salamon and Masters (1995) extended the classical 
plate/laminate theories to include geometrical non-linearities for situations where the 
out-of-plane deflections are on the order of many plate thicknesses (while the strains 
are still very small). In these analyses, the out-of-plane deflections and the mid- 
plane normal strains are approximated by second-order polynomials whose unknown 
coefficients are determined by minimizing the total strain potential energy and by 
identifying the equilibrium shapes of the multi-layers. An outcome of this exercise is 
the realization that while the classical plate theory predicts a single shape with a 
unique curvature at low stresses (which arise as a result of the isotropic thermal 
mismatch between the layers), a bifurcation in the solution can occur at higher 
stresses. Here, three equilibrium shapes are feasible after the bifurcation stress or 
temperature. The single shape at low stresses is a spherical geometry for isotropic thin 
films on substrates (Salamon and Masters, 1995) and a saddle shape for unsymmetric 
(anisotropic) laminates (Hyer, 1981). The post-bifurcation configurations for the 
isotropic thin-film/substrate case at higher stresses are an unstable (nearly) spherical 
case and two stable ellipsoidal shapes with two different non-zero curvatures along 
the two mutually orthogonal in-plane coordinate (x and y) axes. For the unsymmetric 
laminate, the corresponding post-bifurcation configurations are an unstable saddle 
shape and two stable cylindrical shapes which can be snapped from one to the other 
by small perturbations in applied force or moment. All these shapes predicted by the 
non-linear theories have been observed experimentally (Hyer, 1981a; Fahnline et ai, 
1991). In subsequent studies, Masters and Salamon (1994) systematically released the 
following restrictive assumptions of the foregoing models: (i) the mid-plane normal 
strains vary only in one direction, and (ii) the mid-plane shear strains vanish. Releasing 
the first simplification did not affect the solutions significantly; however, allowing the 
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mid-plane shear strains to vary and approximating the mid-plane normal stresses by 
a sixth-order polynominal (instead of a second-order polynominal) markedly 
improved the solution. This was especially true in the vicinity of the bifurcation in 
the solution, as verified by comparing the analytical formulations with non-linear 
finite element simulations. The large deformation elasticity analyses of laminates and 
thin-film/substrate systems have focused on square plate geometry for the multi- 
layers. The critical conditions identified for the bifurcation in the solution and for the 
occurrence of multiple shapes in the post-bifurcation equilibrium configuration are 
very specific to the square layer geometry. 

In the present paper, we begin with a discussion of a new generalized formulation 
for the coupled bending response within the context of small deformation elasticity 
theory. We then show, within the context of the classical (thin) plate theory, that the 
geometric shapes and stability conditions reported for the square layer geometry do 
not have general validity for rectangular multi-layers where the in-plane edge lengths 
are unequal. In this context, we explore the changes in the conditions governing large 
deformation as the length to the width ratio and the length to the thickness ratio of 
the layers are systematically varied for both "thick" and "thin" multi-layers.f In 
addition, as discussed in the following sections, we consider the effects of plasticity or 
compositional gradations in one of the layers of the multi-layered structure on the 
evolution of curvature and stability during large deformation. The analytical for- 
mulations are checked with non-linear finite element analyses involving shell elements 
(without incorporating edge effects), wherever appropriate. 

1.2.    Plastic response 

The aforementioned theories for small and large deformation responses provide 
reliable results only when each layer in a multi-layer stack exhibits an elastic response. 
In many engineering structures and devices employing metallic layers, plastic strains 
can evolve even during cool down from the processing or deposition temperature, 
and the plastic strains may accumulate during subsequent thermal or mechanical 
loading/cycling. Examples of applications where such plastic deformation is of con- 
siderable interest for failure analyses include thermal-barrier and tribological coatings 
of ceramics adhered with metallic bondcoats on metallic substrates, metallization 
films deposited on semiconductor layers in electronic devices, piezoelectric detectors, 
and alloy solders used in integrated circuits. The development of plastic flow can 
drastically alter the deformation characteristics, the fracture response, and the service 
lifetime of multi-layers, thereby rendering the commonly-employed linear-elastic 
analyses unreliable. The estimation of both elastic stresses and elastoplastic defor- 

f Throughout this paper, "thick" multi-layers refer to those for which the thickness of each layer is 
substantially greater than the appropriate microstructural size scale, such as the grain size, and for which 
no layer is significantly thicker than any other. "Thin" film refers to a layer in a multi-layer stack wherein 
at least one layer is significantly thicker than the others and the thickness of the layer may be comparable 
to the characteristic microstructural dimensions. For both cases, the continuum formulations described in 
this paper are expected to hold because (i) the in-plane dimensions are significantly larger than the 
microstructural size scale and (ii) the plates are subjected primarily to a state of biaxial stress. In all cases, 
we employ the thin plate theory where the overall thickness of the plate is much smaller (less than 2%) 
than the smaller of the two in-plane dimensions. 
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mation in thin ductile films deposited on thick elastic substrates usually involves 
experimental measurements of curvature which is then converted to an average film 
stress on the basis of the classical Stoney's formula (Stoney, 1909) or its appropriate 
modifications. In this approach, the average stress in the thin-metal film deposited on 
a substrate is related to the change in overall (spherical) curvature, for a state of 
equal biaxial stress (see the discussion in Section 2.2.1). 

The Stoney equation is simple to implement and provides a measure of the average 
stresses and small deformation response of thin ductile layers (deposited on substrates) 
exhibiting elastic/plastic deformation. There are, however, some serious drawbacks. 
(1) It is not amenable for directly predicting the variation of curvature with tem- 
perature fluctuations, especially for the general multi-layered systems (with more than 
two layers) of arbitrary layer thicknesses, and temperature-dependent physical and 
mechanical properties commonly encountered in microelectronic devices and struc- 
tural coatings. Such predictions are necessary for direct comparisons with exper- 
imentally determined curvature changes. (2) In addition, the variation of stresses 
along the thickness of the layer cannot be estimated; this may be necessary for 
identifying the failure origins in multi-layered systems. (3) As shown later in the 
present article, the evolution of plastic deformation, in conjunction with the in-plane 
anisotropic response and/or large deformation, can induce an overall mechanical 
response of the multi-layer that can differ markedly from that predicted by the simple 
Stoney approximation. 

In an attempt to overcome these limitations of conventional approaches, detailed 
elastoplastic analyses for two-layered and three-layered systems subjected to thermal 
cycling have been reported (Suresh et al., 1994; Shen and Suresh, 1995a). These 
analyses also reveal that there exists a direct link between the spread of plastic 
flow in one or more ductile layers of multi-layered systems (depending on certain 
combinations of layer properties and thicknesses) and the occurrence of specific 
geometry changes, such as the reversal of curvature (Shen and Suresh, 1995a). 

The aforementioned elastoplastic analyses for small deformation can also be 
implemented into simple numerical programs amenable for use with personal com- 
puters (e.g. Finot and Suresh, 1994). Here the effects of (i) in-plane anisotropy, (ii) 
plastic flow with strain hardening, (iii) thermal heat conduction across layers, (iv) 
variation of physical and mechanical properties with temperature, (v) plastic strain 
accumulation in one or more layers during thermomechanical cycling, and (vi) com- 
positional gradients on the evolution of stresses, plastic strains, multiple curvatures, 
and failure at any location can be estimated (without incorporating edge effects) for 
a general multi-layered system with arbitrary numbers of well-bonded metal and 
ceramic layers, each of arbitrary thickness. In the present paper, we extend earlier 
analyses of elastoplastic deformation in multi-layered systems to include certain 
specific cases of large deformation, within the context of small strain plate theory.f 
For this purpose, we choose two model systems: (i) a bilayer comprising an aluminum 

t More comprehensive, fully three-dimensional, thick plate analyses of elastoplastic bifurcation including 
large strains and rotations reveal overall trends of elastoplastic response which are qualitatively similar to 
those presented in this paper (Giannakopoulos and Suresh, 1995). The onset of bifurcation and the 
conditions governing its dependence on thermal loading, however, may depend on the level of details 
incorporated in the analyses. 
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thin film deposited on a Si single crystal substrate, and (ii) a thick Ni layer bonded to 
a thick alumina ceramic substrate. 

1.3.    Compositional gradients 

Multi-layered structures with gradients in composition, microstructure and proper- 
ties across the thickness of one or more layers are of much research attention because 
of current or potential applications in a variety of engineering applications. Examples 
include case-hardening of steels for tribological protection, thermally-sprayed zir- 
conia-metal graded coatings for thermal-barrier protection in ground-vehicle engines, 
and Si/Ge and InGaAs graded layers in microelectronics and optoelectronics. Inten- 
tionally grading the composition and/or microstructure of materials can offer the 
possibility for improvements in performance and damage tolerance on account of the 
following considerations. 

• A compositionally graded interlayer between two dissimilar solids with a large 
thermal expansion mismatch "smoothens" the distribution of thermal stresses 
across the thickness of the layer and can be used to diminish the magnitude of 
thermal stresses at critical locations. 

• The magnitude of the thermal stresses can be altered by the proper choice of 
layer thickness and geometry, as well as of the profile of the compositional 
gradient in the layer. 

• Compositional gradation can mitigate the spread of plastic flow in ductile layers, 
or the onset of cracking at the interface and within the brittle layers (depending 
on the stability of the microstructure during service and on the geometry of the 
graded layer). 

• Graded semiconductor layers, synthesized by molecular beam epitaxy or chemical 
vapor deposition, can be used to control the population, distribution or kinetics 
of misfit and threading dislocations in heteroepitaxial structures (Fitzgerald et 
al, 1992). 

• Compositionally graded interfaces in multi-layered structures can minimize or 
even fully eliminate stress concentrations and singularities at free edges, thereby 
improving the tolerance of the structure to the onset of cracking (Erdogan et al, 
1991). 

• The joining of "thick" layers (typically 0.5 mm or more in thickness) of dissimilar 
solids, such as metals and ceramics, subject to large excursions in temperature 
necessarily requires an interface with a step-wise or a gradual change in com- 
position to maintain the mechanical integrity of the interface. 

Thermoelastic (Kroupa et al, 1993; Williamson et al, 1993; Freund, 1993; Gian- 
nakopoulos et al, 1995) and thermoelastoplastic (Williamson et al, 1993; Gian- 
nakopoulos et al, 1995; Finot et al., 1996) responses of compositionally graded multi- 
layers under small deformation conditions have been addressed both theoretically 
and experimentally. In addition, engineering diagrams providing graphical rep- 
resentations of the effects of layer geometry and compositional gradation on the onset 
of deformation and failure have been formulated (Finot et al., 1996; Giannakopoulos 
et al., 1995). In Section 5 of this paper, we present an analysis of the effects of 
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compositional gradation on the large deformation response of compositionally graded 
elastic multi-layers. Two applications involving tri-layer systems are considered: (i) 
a compositionally graded thin-film layer sandwiched between thin-film layers of 
In0.i2Ga088As and GaAs, and (ii) a compositionally graded Ni/alumina composite 
sandwiched between thick layers of homogeneous alumina and Ni. 

2.    THEORY 

We first present in this section a new general formulation, in closed form, on the 
evolution of stresses and curvature due to strain mismatch among the different layers 
in a multi-layer stack, within the context of small deformation elasticity theory. 
Explicit expressions are presented for the stress/curvature relations for a bilayer plate 
with isotropic in-plane elastic properties, but with an anisotropic inelastic strain 
mismatch. It is shown that the elastic bilayer is fully characterized by the ratio of the 
layer thicknesses, and by two elastic mismatch parameters: (i) the ratio of the biaxial 
Young's moduli of the layers and (ii) the ratio of the shear moduli of the layers. It is 
demonstrated that the two principal curvatures of the bilayer due to strain mismatch 
are uncoupled only if the two layers have the same Poisson's ratio. In the general case 
relevant to the vast majority of practical applications, these exists a coupling between 
the curvatures along two in-plane orthogonal directions if there is a variation of the 
Poisson's ratio through the thickness. This coupling is quantified with closed-form 
solutions. New solutions are also presented for the direct determination of the elastic 
stress variations through the thickness of the multi-layer in terms of the two principal 
curvatures and the orientations of the principal curvature directions. Extensions 
of this method to layered plates with compositionally graded interlayers are also 
discussed. 

2.1.    Nomenclature and review of standard methods 

Consider a layered stack of dissimilar solids whose in-plane reference coordinates 
are denoted by x and y axes, and the layer thickness direction is along the z-axis, as 
shown in Fig. 1(a) and (b). The in-plane shape of the general multi-layer analyzed in 
this work is a rectangle whose dimensions are Lx and Ly along the x and y axes, 
respectively. The plate is assumed to have a uniform thickness and a uniform tem- 
perature (at all times during thermal excursions). 

Let the multi-layer be flat (zero curvature) and stress-free at the reference state 
(such as the sintering, bonding or curing temperature for laminates, or the deposition 
temperature for thin films). Consider the application of uniform forces 
N = {Nxx,Nyy,Nxy), uniform moments M = (Mxx,Myy,Mxy), and internal inelastic 
strain, sinel. Here emel, which is a function of z only, is the inelastic strain which may 
result from plasticity, thermal expansion, epitaxial strains, differential shrinkage of 
powders during sintering, or transformation strain. For such loading, the transverse 
components of strain can be assumed to be negligible in the plate except within a 
distance equal to the thickness from the edge of the plate, in accordance with the 
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\ \ 

layer 1,  E,, vt, a, 

layer 2,  E , v2, a; 

(a) 

(b) 

Fig. 1. Schematic of the geometry of the layered plate and the associated nomenclature, (a) Bilayer and (b) 
graded trilayer. 

classical Kirchoff plate theory. The relevant total strain components can then be 
written as 

82w      0 
£x* = e» - z -^ = e„ + KXXZ, 

82w _  0 
£yy ~~ Eyy ~z 3  2 ~ £>'y     KyyZ' 

a) 
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flat plate    K x = Ky = 0 sphere Kx — Ky 

Kxy=0 

Kx, K 

saddle shape     ~* -v „ , _ 
cylinder     Kx = 0,  Ky p 0 

(or)   Ky=0,  Kx^0 

Kxy^0 

Fig. 2. Schematic of the Mohr's circle representation of the shape of a plate. The x and y directions are the 
principal directions of curvature. 

where w is the out-of-plane displacement. In the case of small deformation, i.e. when 
w is small compared to the thickness of the plate, the curvatures and the strains at 
z = 0 can be assumed to be constant in the plate. (The large deformation case is 
considered in Section 2.6.) The degrees of freedom for the small deformation case 
are: (i) the two curvatures, KXX and Kyy, along the x and y directions, respectively, and 
the twist curvature, Kxy, and (ii) the strains at z = 0, s°x, eyy and yxy. 

It is convenient to use the Mohr's circle representation of the curvatures to visualize 
the shapes of the layered plate (see Fig. 2). As discussed in Hyer (1981a), the shape 
of a layered plate can be represented as a circle with a center at \{KX + Ky) and a radius 
equal to -(KX — Ky) in the KxJKy — Kxy space; here, KX and xy are the principal curvatures. 
Examples of different shapes are illustrated in Fig. 2. The total strains can be written 
in vectorial form as 

/   k\'Y 

-ZK 

8XX -f- ZKv 

-ZK 

\yXyl    \yxy + 2zKx xyi 

(2) 

where the variables, such as s or K, represent three-dimensional vectors. The consti- 
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tutive response at any location, z, through the thickness depends on the stiffness 
matrix [S], in the general orthotropic elastic case, as 

5*!)    512      0 

[S(z)] =  512    522      0    . (3) 

_ 0       0     566 

The stress distribution through the thickness is 

lffxx(z) 

a=\ayy(z)  = [S](e-£'nel). 

In the present analysis, we consider the thermal expansion strain given by 

(4) 

(5) 

where a is the coefficient of thermal expansion (CTE). Combining (4) and (1), the 
resultant force and moment due to the stress distribution through the thickness are 

N = a{z) dz = [A] £° + [B] K - 7Vinel,   and (6) 

M = ef(z)zdz=[B]£° + [D]K-Minel, (7) 

where [A], [B] and [D] are the classical reduced stiffness matrices of the plate (Tsai, 
1988) defined as 

[A] [S]dz,    [B] [S]zdz    and    [D] [S]z2 dz. (8) 

JVinel and Mind are the resultant forces and moments induced by the inelastic strains 

jy-inel _ [S](z)einc,dz    and    MmA =     [S](z)einelzdz (9) 

Equations (6) and (7) show a system of six linear equations for the six degrees of 
freedom given by 

\M+Mina 

[A]    [B] 

JB]    [D] Jh< (10) 

A simple inversion of the 6 x 6 matrix [C] provides the value of the curvatures, KXX, 

Kyy and Kxy, and the strains, e°x, s°yy and y°xy, as a function of the applied force and 
moment, M and N, and as a function of the internal force and moment, Nme' and 
Minel. 
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K) \M+M
U 

The stress distribution through the thickness can be computed by (4). It is important 
to note that a uniform inelastic strain sinel through the thickness does not generate 
any stress. Therefore, this uniform inelastic strain does not alter the curvature; 
instead, it increases the strains at z = 0 by £inel. 

2.2.    General formulation for Isotropie elastic bilayers under internal loading 

The approach developed here is generally applicable to any multi-layer stack, with 
interfaces that are mechanically bonded with or without compositional gradients, 
wherein the elastic properties have in-plane isotropy, but the internal mismatch strains 
may be anisotropic. The layered solid is free of external constraints. In order to derive 
simple closed-form solutions and to keep the algebra to a minimum, the following 
discussion centers around bilayer plates. It is convenient to define a normalized 
curvature for the bilayer, 

,     (hl+h2)\ 
K = ———. K = AK, (12) 

6«! «2 

where ht and h2 are the thicknesses of the two layers.f With this normalization, the 
curvature has a finite, non-zero value when ht or h2 goes to zero in the thin-film limit. 
We assume that the inelastic strain is uniform in layers 1 and 2, and is equal to e'"d 

and e2
nel, respectively. Only the case where 1?™' = — s^1 = Ae/2 needs to be addressed. 

Since the two layers are isotropic, the response of the plate is solved by considering 
two basic problems: (i) pure equal biaxial internal normal strains, Aem = Aexx = Aeyy 

and Ayxy = 0, and (ii) pure shear internal strains, Aexx = — Aeyy. 

2.2.1. Equal biaxial loading. For an isotropic material under equal biaxial loading, 
the deformation is characterized by the mean curvature, Km and the mean strain sm at 
z = 0. The mismatch strain is a pure equal biaxial mismatch equal to Ae = (Ae, Ae, 0). 
In this case, the geometry of the two layers at any point of deformation is fully 
specified by the ratio of the two thicknesses, p = hjh2, and by the ratio of the two 
biaxial moduli, Em = £",(1 — v2)/{E2(l — v,)}. From (11) the normalized curvature and 
the strain at z = 0 are 

-f(Em,p)As   and    £
m = e°xx = z°yy = e™+g(EBi,p)Ae,     (13) 

(l+p)4J?Bi 

l+2EBip(2 + 3p + 2p2)+E2
Bip

4 KE^P) = , , ^   .„."." 2. , &   4 • (14) 

,*      . -l+4Jw>(l-p2) + £|iP
4 

g{Lm'P) -2{\+2EKp(2 + 3p + 2p2) + El^Y (15) 

fThe normalization in (12) involves a factor of six in the denominator because it provides a link to the 
commonly used "Stoney" formula [see (17)]. 
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Fig. 3. Representation of the function/in terms of the thickness ratio, p = hjh2, for different values of 
the bi-axial modulus ratio, EBi. 
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Fig. 4. Representation of the function g in terms of the thickness ratio, p = hjh2, for different values of 
the bi-axial modulus ratio, fl. 

The functions/and g are plotted against p in Figs 3 and 4, respectively, for different 
values of Em. When p -> 0, /-► EBi and g -> -0.5; when p -► oo, /-> l/Em and g -> 
0.5. If the interface is at z = 0, the stress distribution through the thickness is 
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°"(z) =^L
r(g(EEl,p)-1-+zf(Em,p)^l)Ae,   in layer 1, 

<rm(z) 

1-v, 

E2 

1— v7 
(g(Em,p)+\+zf(EBl, p)k~' )Ae,   in layer 2, (16) 

where X is the length defined in (12). 
From these equations, we can recover stress/curvature relations derived by Stoney 

(1909) for the thin-film limit 

k{hx -+0) = 6™£BiAe = 6 ht (l-v2) 
hi     E7 

uf> e°{hl^0)=g (17) 

This Stoney approximation for the average stress in the film, of, is represented by the 
plateau regions (i.e. /independent of p) in the left and right extremes of Fig. 3 for 
different Em. For p x 10"2-102, the Stoney formula becomes invalid, and (13) pro- 
vides accurate results. 

2.2.2. Pure shear loading. Another extreme situation pertinent to the present 
problem is pure shear loading for which At = (0,0, Ayx>)). In this case, the appropriate 
elastic mismatch parameter is the ratio of the shear moduli of the two layers, 
fi = fijfi2 = Ei(l+v2)/{E2(l+vl)}. The twist curvature and the shear strain at the 
interface, z = 0, are then written as 

KXy=f(fi,p) 
Ayx y7;+g(fi,p)Ayx (18) 

where the functions/and g are defined in (14) and (15). The shear stress distribution 
is 

■c(z) = ix1(g(fi,p)-2- + zf(fi,p)l  l)Ayxy   in layer 1, 

T(Z) = p2(g(fi,p)+\ + zf(fi,p)X~l)Ayxy   in layer 2. (19) 

2.2.3. General normal and shear loading. Consider next both normal and shear 
thermal strain mismatch, Aexx, A&yy, and Ayxy. The three curvature values for the 
bilayer plate, kxx, kyy and kxy, are 

/ Kxx \ 

K — = [K]Ae = 

\ kyx I 

b+s   b-s   0 

b-s   b+s   0 

0 0s 

l 

IAsx. 

Asy 

\Ayx 

b = \AE^,p)    and   s = \f(ß,p). 

The strains at z = 0, E°, are equal to 

e° = eaTC + [E] Ae, 

where the matrix [E] has the same form as the matrix [K] with b and s given as 

b = \g(Em,p)    and   s = \g{ß,p). (23) 

(20) 

(21) 

(22) 
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H=1.5EBI 

p=h1/h2 

Fig. 5. Representation of the Poisson effect characterized by vk = K„./K„ as a function of the thickness 
ratio, p = hl/h2, for different values of the biaxial modulus ratio, Em, and shear modulus ratio, p.. 

It is interesting to note that this matrix is very similar to the stiffness matrix of an 
isotropic material. With similarity to the Dundurs' parameters for elastic bilayers 
(Dundurs, 1969), the above problem is fully formulated in terms of two dimensionless 
material parameters, EBi and p., and the relative thickness, p. 

2.2.4. Coupling between curvatures along in-plane orthogonal directions. One can 
further characterize the curvature coupling effect between the in-plane orthogonal 
directions by the ratio vK=(b-s)/(b + s) = KJKXX, which represents the "Poisson 
effect". This effect, in the present context, refers to the strain mismatch in one direction 
due to the curvature in the other direction. The factor vK is defined in terms of EBi and 
jj. in the following way 

(EBi-ß)(l-ßEBip
4) 

(24) 
"     (EBl + ß)(\+ßEBip

4) + 4ßEBlP(2-3p + 2p2)' 

When hx -> 0, vK approaches a limit independent of Ex and E2 and is given by the 
simple expression 

Em-fi      vl-v2 vK(/*,-*0) = 
EBi + fl     1- 

(25) 

The variation of vK as a function of p = hxjh2 is plotted in Fig. 5 for p. = 1-15. An 
increase in ß/EBi causes a marked increase in |vK|, which is independent of p in the 
thin-film limit (p ^ 1(T2 or p > 102). For 1(T2 < p < 102, |vK| is sensitive to both p 
and EBi/ß as shown in Fig. 5. 

The results of Fig. 5 clearly show that the Poisson ratio mismatch across the layer 
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thicknesses can cause an appreciable coupling effect in some cases. Consider, for 
example, the bilayer for which Em = 5 and /i=1.3 EBi. For this combination, 
|vj x 13%, or Kyy x +0.13 KXX even when the two layers are elastically isotropic. This 
non-zero value of vK caused the bilayer plate to assume a saddle shape or an ellipsoidal 
shape instead of a spherical shape during small elastic deformation. 

2.2.5. Stress I curvature relations. Curvature changes during layer deposition or 
thermal cycling are commonly monitored in many structural coatings and thin-film 
applications to estimate the evolution of thermal and intrinsic stresses in multi-layers. 
The Stoney approximation for thin films, (17), which relates the average biaxial stress 
in the film to the curvature, is commonly used to approximate the film stress. In this 
section, we present general expressions for determining the variation of stresses 
through the thickness of each layer in a bilayer with arbitrary layer thicknesses directly 
as a function of the measured curvature (and independently of the origin or magnitude 
of the strain mismatch between the layers). 

The stress distribution through the thickness is given by 

a(z) = [S.KE-i+Kz/T^Ae   in layer 1, 

a{z) = [S2](E+\+KzA-l)M   in layer 2 (26) 

where [S] is the stiffness matrix defined in (3) and X is the length defined in (12). 
It is important to note that the stress distribution depends only on the strain 

mismatch between the two layers. Therefore, if the matrix K is not singular, the stress 
distribution through the thickness varies linearly with curvature. There exists a matrix 
[X(z)], independent of the loading conditions, such that 

a{z) = [E(z)]K, (27) 

where 

[S(z)] = [S,](A(E-i)+Kz)K-'    in layer 1, 

P(z)] = [S2](A(E+i)+Kz)K-'    inlayer2. (28) 

This is a generalization of the Stoney formula to an elastic bilayer with arbitrary layer 
thicknesses. Explicit expressions of the mean stress and the shear stress can be found 
in Section (2.5). 

The previous analysis can easily be generalized for n layers in a multi-layer stack. 
However, in most cases, the relation between the stress and the curvature is not unique 
since the number of independent variables to determine the internal deformation will 
be larger than three which is the number of variables characterizing the curvature. 
However, in the case of a three-layered plate with a graded layer inbetween two 
homogeneous layers, this stress/curvature relation can easily be written in closed 
form, as discussed in Section 2.4. 

The curvature matrix can be derived in a straightforward manner for the orthotropic 
bilayers as well using the procedure discussed above. For orthotropic materials, it can 
be shown that the matrix has the following general form 
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K = 

Krx    Nx 

Nrv    Kt yy 

0     GJ 

(29) 

2.3.    A particular case of generalized plane strain 

The assumption of a generalized plane strain state allows us to examine the case 
where the plate is constrained to deform as a cylinder. In this state, we invoke the 
condition that the plate has a zero curvature in the y direction. The problem now has 
four unknowns which are: the principal curvature, K = KXX, the two principal strains 
at z = 0, e°xx and s°y, and the resulting moment in the y direction. 

The problem is solved by noting that the resulting forces, Nxx and Nyy, and the 
resulting moment, Mxx, are zero. These three conditions lead to the following linear 
system of equations 

Au    Ax2    Bu 

Ail       A22       -"12 

Bu    Bi2    Du 

<\ 
1 W£ 

»rind 
JV yy 

\Mff 

(30) 

where the matrices [A], [B] and [D] are defined in Section 2.1. The expression for the 
resulting moment in the y direction, Myy, is given by 

Mvv = Bl2a° + B22s°v + Di2K-M (31) 

For the isotropic bilayer presented in Section 2.2, the curvature in the x direction is 
simply equal to (f(Em, p) + vK)Ae where/and vK are defined in (14) and (24). 

2.4.    Graded layer 

Consider the thermoelastic response of a three-layered system, with a com- 
positionally graded layer between two layers of homogeneous compositions, subject 
to a uniform change of temperature. Giannakopoulos et al. (1995) and Finot et al. 
(1996) studied the elastic and plastic behavior (small deformation) of such a trilayer 
plate, and Freund (1993, 1996) has considered the small deformation elastic response 
of compositionally graded thin films. In the present work, we consider the large 
deformation of the compositionally graded material subject to thermal loading. 

We assume a linear variation of biaxial modulus, the shear modulus and the 
coefficient of thermal expansion in the graded layer such that 

P = P,    for a sS z sj hx 

P = 
P1+P2 

■ + • 
■Pi z for — a ^ z ^ a, 

2       '       2      a 

P = P2    for-/22 sSzsS -a, (32) 

where P is any material property that in the present context is the biaxial modulus, 
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EBi, the shear modulus, p, or one of the coefficients of thermal expansion (a*, ay, xxy). 
With these assumptions, the previous analyses of Giannakopoulos et al. (1995) and 
Finot et al. (1996) can easily be extended to compute the mean and shear curvatures, 
with an additional dimensionless parameter which is the ratio of the thickness of the 
graded layer to the total thickness of the trilayered solid: pa = 2a/(hi + h2). We have 
found that there is still a direct link between the curvatures of the plate and the stress 
distribution through the thickness, analogous to the results presented for the sharp 
interface case in Section 2.2. (Full details are not presented here because of space 
restrictions.) Using the analytical results of Section 2.1 of this paper, and Section 2.1 
in Giannakopoulos et al. (1995) and assuming small deformation theory, the mean 
curvature and the shear curvature can be expressed as 

Km =/(4i, P, Pa)A«mAT,    icxy =f(fi, p, pJA^AT, (33) 

where the expression for / can be found in the Appendix of Giannakopoulos et al. 
(1995) and the dimensionless parameters EBi, p, pa and fi are defined in Section 2.1. 
Here, Aam and AaA> are the mismatch of mean CTE and the mismatch of shear CTE. 
Explicit expressions for the stress/curvature relations for a general, compositionally 
graded trilayer are given in the Appendix of the present paper. 

2.5.    Plasticity 

Suresh et al. (1994) studied the conditions governing the onset and spread of 
plasticity in an isotropic bilayer subject to cyclic thermal loading. They defined a set 
of critical temperature changes to characterize plastic deformation in one or both 
layers. Shen and Suresh (1995a) extended this problem to some specific geometries of 
a general metal/ceramic trilayer system, and established a direct link between the 
spread of plasticity and the occurrence of reversals in curvature. Giannakopoulos et 
al. (1995) considered the effect of a graded interlayer on the critical temperature for 
the initiation and spread of plastic flow, within the context of small deformation 
theories. 

Consider a metal/ceramic bilayer in which layer 1 is a metal undergoing plastic flow 
and layer 2 is a ceramic (elastic material). It is possible to define a critical temperature 
change beyond which layer 1 yields. For the isotropic bimaterial case subject to 
general anisotropic loading, the problem can be considered as a superposition of a 
mean equal axial stress field, am(z) and a pure shear field, T(Z) (Hill, 1950). The 
effective stress is simply given by 

(ae)2 =(0
2
 + 3T

2
. (34) 

The effective stress is always a maximum at the interface between the two layers 
because both the mean stress and the shear stress assume extreme values there. The 
mean stress and the shear stress in layer 1 at the interface are given by 

cTT=T^L-(^(4i,p)-f)A£m    and   ^=p1(g(fi,p)-\) Ay, (35) 
1—V[ z 

where g is defined in (14) and (15), Aem is the mean strain mismatch and Ay is the 
shear mismatch. A plot of the loading, which equates the effective stress to the yield 
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strength of layer 1 in the plane (Aem, Ay), defines the yield locus beyond which layer 
1 starts to yield. Since there is a uniqueness between the stress field and the curvatures, 
it is possible to define a critical shape change at which plastic yielding has occurred. 
This is accomplished by linking the mean stress to the mean curvature, and the shear 
stress to the twist curvature. 

™ £l    1+^(3 + 4,)^    and   ti = _2^!±M3±4p>^    (36) 

l-v,  4,(i+P)
4 flv+pr 

2.5.1.    A special case for thermal loading. For thermal loading, the mean strain 
mismatch and the shear strain mismatch are 

As™ = Aa* + Aa>AT   and   Ayx, = (Aax-Aay)AT. (37) 

As defined in Suresh et al. (1994) for isotropic bimaterials, the first critical tempera- 
ture, A7\, is the temperature change required to induce plasticity in the ductile layer. 
If layer 1 has a yield strength equal to ax, the critical temperature and the cor- 
responding critical curvature for the onset of yielding, respectively, are given by 

2ff,(l-v1) „   _ 2gl(l-v.Xfl&j.p) 

'"EMm{2g{EK,p)-\Y   Kl      £,(2^Bi,p)-l) ' 

where g and / are defined in Section 2.2. Note that the critical curvature does not 
depend on the CTE mismatch. If the CTE mismatch is not isotropic, the difference in 
curvatures between the two principal directions is given by 

Hx-Ky= f(fi, p) (A«x - Aay)AT. (39) 

2.6.    Large deformation and bifurcation 

When the out-of-plane deflection of the plate is comparable to the thickness, the 
strain and the curvature throughout the plate are no longer uniform. Following the 
work of Hyer (1981a, b, 1982) for orthotropic laminates and Masters and Salamon 
(1993,1994,1995) for thin films, we extend the analysis of the large deformation 
problem for bilayer materials (of arbitrary layer dimensions) subject to thermal 
excursions. Certain aspects of this problem have been considered as far as five decades 
ago (e.g. Panov, 1947, Writtick, 1953) in the context of the stability of bimetallic disk 
for thermostats. 

The displacements (u°,v°,w°) along the axes x, y and z, respectively, and the 
strains at the mid-plane, z = 0, are related by (von Kärmän, 1910; Timoshenko and 
Woinowsky-Krieger, 1959). 

du°     IfdwV 
s°  =■ 

dx     2\dx 

dv°     1 fdw 

Hy+2\ty 
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„      du°     dv°    (dw\(dw\ 

^T+^+yy-        (4o) 

The main assumption of the model is to consider the deformations of the plate with 
constant curvatures. Therefore, the deflection w{x,y) is given by 

w(x, y) = -\(KXXX
2
 + Kyyy

2 + 2icxyxy), (41) 

assuming that w is small compared to the dimensions of the plate, Lx and Ly. 
The in-plane displacements u and v, are considered as polynomials in x and y of 

different orders. In their studies of the departures in the bending responses of lami- 
nated plates and thin films on substrates from the classical Kirchoff plate theory 
predictions, Hyer (1981b) used polynomials of order two, while Salamon and Masters 
(1995) used polynomials of order up to six in an attempt to consider the in-plane 
shear and the boundary conditions at the edges. The curvatures were then computed 
by minimizing the strain energy of the system using the Rayleigh/Ritz energy min- 
imization approach. 

It was found in the above studies that the curvature was not linear during thermal 
excursions (as a consequence of large elastic deformation). In addition, at a certain 
imposed load or temperature change, a bifurcation of the solution was observed, 
resulting in the possibility of several equilibrium shapes some of which were stable 
beyond the point of bifurcation. The main drawback of this formulation is the 
assumption that the curvature is uniform in the plate. In many cases, this assumption 
may result in the bifurcation of the solution. 

Analytical expressions of the critical curvature and critical strain mismatch can be 
found for bilayered isotropic plates with Lx = Ly = L. In the case of large defor- 
mation, the curvature, K, is no longer a linear function of the strain mismatch. 
However, the critical radius of curvature for bifurcation can be expressed by the ratio 
L2/(h{ + h2), as noted in Masters and Salamon (1993). This is equivalent to considering 
the bifurcation phenomenon as a ratio of the critical defection of the plate, wc, to the 
total thickness of the plate. The critical curvature and the critical deflection are given 
by 

h L2 h 
— Kc(material distribution)    and    wc =—-KC = -i 
J_j *+ *+ 

KC = — Kc(material distribution)    and    wc = — KC = -KC(material distribution) 

(42) 

where kc is a dimensionless curvature depending on the material distribution (e.g. 
compositional grading). 

If we consider a second order strain approximation with a non-zero midplane shear 
strain, the normalized curvature, kc, can be expressed as 

k2 = 24(l + 5 \U66D66-Bh\ (43) 

\+Al2/An   \        A2 
66 

where [A], [B] and [D] are the reduced stiffness matrices. Note that kc depends only 
on the shear modulus distribution and on the coefficient Al2/Au. 
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For example, for a bilayered plate with the same Poisson's ratio, v, for both layers, 
(which implies that Al2/An = v), the square of kc is given by 

„2 __24(6 + v)(l+fip(4 + 6p + 4p2) + fi2p4) 
Kc~ (l+v)(l+/2p)2(l+p)2 

For the thin-film limit, i.e. as p -> 0, KC is simply equal to 

/24(6 + v) 

(44) 

(45) c     V   (1+v)   ' 

as expressed in Salamon and Masters (1995). 

2.7.    Finite element calculations 

Finite element calculations have been carried out in this study to check the accuracy 
of the analytical formulation, and to extend the large deformation problem to elasto- 
plastic bimaterials. The general purpose finite element program ABAQUS (1994) was 
used. An 8x8 regular mesh of 8-noded general shell elements with 17 integration 
points through the thickness was used with a non-linear geometry integration scheme. 
The convergence of the mesh has been checked by increasing the number of degrees 
of freedom. In the case of a bifurcation in the solution (square plate for example), 
possible solutions were computed by introducing an initial perturbation before the 
temperature change. This perturbation was a moment distributed on the edge of the 
plate. This moment, which depended on the geometry of the plate and the material 
distribution (i.e. grading), was reduced to be of the least possible value in an attempt 
to achieve converge towards the exact bifurcation behavior predicted by the theory. 
The simulations were done on a multi-layered rectangular plate free of external 
constraints under uniform temperature change. Only one quarter of the plate was 
modeled assuming that the deformation preserves the two symmetric in-plane axes. 
(In some cases, however, the development of shear loading may lead to the rotation 
of the principal axes.) The ratio of the in-plane length of the plate to the thickness 
was chosen to be always greater than 50 such that the effect of the singularity of the 
field at the free edge could be considered negligible in order to use the shell elements. 
In the case of a graded region, each integration point through the thickness was given 
a linear interpolation between the two homogeneous layers as presented in Section 
2.4. The plastic behavior of the metallic layers was modeled as conforming to the J2 

flow theory. We considered a wide variety of numerical simulations incorporating 
different degrees of internal constraints on the plate in an attempt to simulate the 
analytically predicted trends. On the basis of these computations, the following 
observations can be made. 

(1) When a perfect square plate was modeled, the post-bifurcation shape revealed 
five main eigenmodes corresponding to two cylindrical shapes oriented along 
the x and y axes, two cylindrical shapes oriented along the directions of the 
diagonals of the square, and a 4-fold symmetry shape. In the present paper we 
focus only on the first two modes which are the lowest energy shapes. 

(2) When the symmetry of the plate is lost by increasing the size in one direction, 
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the finite element calculation does not reveal any abrupt bifurcation which is 
predicted by the analytical methods. This is so because the plate gradually 
curves more in the longer direction. 

(3) The freezing of the out-of-plane shear or membrane shear did not affect the 
deformation history. This results from the fact that the aspect ratio LJh is 
large for the cases examined, and that the thermal loading induces localized 
moments and forces which are uniform over the plate. Thus, the imposition of 
temperature changes causes a large deformation bifurcation response of the 
plate which is markedly different from that resulting from an externally applied 
force or moment on the edge of the plate. 

(4) The analytical solution presented in Section 2.6 was recovered by constraining 
the plate to keep a uniform curvature. This was achieved by linking all the out- 
of-plane displacements with a quadratic form in x and y such as (41). The main 
result of this constraint is to create a bifurcation point in the case of rectangular 
plates. 

(5) As noted by Salamon and Masters (1995), the curvature of the plate is not at 
all uniform over the length or the width of the plate. The corners have the 
curvature equal to the small deformation theory. However, the center of the 
plate has a much lower curvature due to the constraints resulting from the large 
deformation. In the present paper, all the curvature values reported for large 
deformation (pre- and post-bifurcation) are taken at the center of the plate in 
order to compare the values for different shapes on a common basis. These 
center-point curvatures were computed from the deflection of the nodes neigh- 
boring the center of the plate. Therefore, the curvatures presented in the 
following figures underestimated the average curvatures of the plate if one 
considers the deflection of the edges. 

3.    LARGE THERMOELASTIC DEFORMATION OF BILAYERS 

In this section, the effects of (i) layer dimensions, (ii) in-plane thermal and elastic 
anisotropy, and (iii) geometric imperfections on the evolution of curvature in bilayers 
are addressed. Attention is confined to a consideration of the thermoelastic response 
and large deformation in each layer under uniform temperature change. 

3.1.    Model systems 

In an attempt to illustrate the geometry dependence of large deformation in 
bilayers, we consider two model systems. (1) A 1-mm-thick layer of polycrystalline 
Ni bonded (e.g. by diffusion bonding) to a 1-mm-thick layer of polycrystalline A1203. 
(2) An unsymmetric, two-ply [O^OJx C-epoxy laminated composite with a ply 
thickness of 1 mm. 

This Ni/Al203 bilayer is of rectangular geometry with Lx — 100 mm and Ly = Lx, 
l.5Lx, 2.0LX, or 5.0LX. The Ni layer has the following properties, which were con- 
sidered isotropic and constant over the range of temperatures analyzed: ENi = 214 
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Fig. 6. Comparison of different models to predict the curvature of a square bilayered plate as a function 
of the normalized temperature change. The aspect ratio of the plate, Lv/(/i, + h2), is assumed to be larger 
than 50. The model system is a Ni/Al203 bilayer with equal layer thickness. The Ni layer is permitted to 

undergo only elastic deformation. 

GPa, vNi = 0.31, and aNi = 15.4 x 1(T6 1/°C. The properties of the isotropic alumina 
layers are: EMi0} = 380 GPa, vAl2o3 = 0.25, and aAl2o3 = 7.4 x 10~6 1/°C. 

The in-plane geometry of this orthotropic bilayer is a 200 mm x 200 mm square. 
The C-epoxy composite plate is an orthotropic material wherein layer has a thickness 
equal to 1 mm and is taken to be linear elastic with the following properties: Ex = 181 
GPa, £2=10.3 GPa, v12 = 0.28, G12 = 7.17 GPa, a, = -0.106 x 10"6/°C and 
<x2 = 25.6 x 10"6/°C. Finite element analyses were conducted with the purpose of 
simulating the evolution of bending in the plate under a positive change of temperature 
from 0 to 200°C. 

3.2.    Predictions based on different theories for different stress states 

Consider first the effect of large deformation, arising from thermal excursions from 
the initial (stress-free) temperature, on the evolution of curvature in the Ni-Al203 

bilayer with in-plane isotropy. The metal layer is permitted to undergo only ther- 
moelastic deformation. Figure 6 shows the variation of the normalizedoirvature, 
k = KL2

xl(hi+h2), as a function of the normalized temperature change, AT = ATAa 
Lll^ + htf, for the Ni/Al203 bilayer. This normalization of curvature and tem- 
perature is chosen because it enables a representation of results which are independent 
of the particular choice of Lxl{hx + h2) when the edge effects are not significant. As 
anticipated, the small deformation theory for anequal biaxial state of stress in the 
bilayer plate shows a linear variation of k with AT (the dashed line in Fig. 6). For a 
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state of generalized plane strain, the small deformation theory (Section 2.3) predicts 
a curvature which is higher than that evolving in a biaxial stress state. The small 
deformation, equal biaxial stress state predicts a spherical shape with a unique cur- 
vature (KX = Ky), whereas a state of generalized plane strain produces a cylindrical 
shape (see Section 2.3). 

The theory for large elastic deformation (Section 2.6) predicts an initial curvature 
evolution at low AT (the solid line in Fig. 6) which is coincident with that seen for 
the small deformation biaxial state. At a critical temperature change, A TCT = A T x 2, 
the two curves begin to deviate. The large deformation theory predicts a single 
spherical curvature which is smaller than that for small deformation. At another 
critical temperature change, ATb = ATx 11.5, a bifurcation in the solution is 
predicted. In the post-bifurcation regime, three different equilibrium shapes are poss- 
ible : a stable ellipsoidal shape with a large curvature in one direction (along the y 
axis) and a small curvature along the other (x axis), shown by the solid lines in Fig. 
6, a stable shape identical to the first one where the x and y curvatures are "flipped" 
(not shown in Fig. 6 for the purpose of clarify), and an unstable spherical shape which 
is a continuation of the initial curvature line prior to ATb, shown by the dotted line. 
With increasing AT, the ellipsoidal shape continues to change whereby ky increases 
while kx decreases. For AT> 14.5, ky becomes larger than the small deformation 
spherical curvature for the biaxial stress state at the same temperature. 

The three-dimensional finite element analyses (the dotted lines in Fig. 6) for the 
Ni/Al203 plate reveal curvature evolution trends which are similar to those predicted 
by the large deformation elastic theory. The curvature values for large deformation 
seen in the computations, however, are lower than the analytical predictions. Note 
that the critical temperature at which the curvatures for small and large deformation 
begin to deviate, ATcr, and the critical temperature at which bifurcation occurs, ATb, 
are predicted to be essentially the same by the large deformation theory and the finite 
element analyses. The maximum values of the post-bifurcation curvature cor- 
responding to the ellipsoidal shape during large thermoelastic deformation 
(AT» ATh) asymptotically approach the cylindrical curvature estimated for small 
deformation under generalized plane strain. 

3.3.    The effects of in-plane geometry on bifurcation 

For fixed thicknesses of Ni and A1203 layers, we explore the effects of changes in 
in-plane dimensions of the rectangular Ni/Al203 plate on the occurrence of bifur- 
cation. For this purpose, finite element analyses were carried out with Lx = 100 mm, 
h\ = ANi = 1 mm, and h2 = AAi2o3 = 1 rnm. The ratio Ly/Lx was varied from 1.0 to 5.0. 

The evolution of normalized curvature k with the temperature change AT is plotted 
in Fig. 7 for the above conditions from the finite element analyses. For the square 
plate, Lx — Ly, a bifurcation in the solution is predicted at AT« 160°C from the 
initial stress-free temperature. When Ly/Lx > 1.0, however, a sharp bifurcation in the 
solution leading to abrupt shape changes is not predicted by the present analysis. 
Instead, a more gradual evolution of the transition from a single spherical curvature 
at the early stages of thermal excursions to an ellipsoidal shape with two distinctly 
different curvatures along the x and y axes is seen for Ly/Lx =1.5. Thermal loading 
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Fig. 7. Effect of the ratio of the two principal lengths of the plate, Lx and Ly on curvature evolution under 
thermal loading. The model system is a Ni/Al203 bilayer with equal layer thicknesses (1 mm). Lx = 100 

mm. The Ni layer is permitted to undergo only elastic deformation. 

causes the rectangular plate to gradually bend more and more in the longer side of 
the plate (y direction); a progressively smaller curvature evolves in the orthogonal 
direction (along the x axis). An increase in Ly/Lx from 1.5 to 5.0 causes a reduction 
in the temperature at which the transition from a unique spherical curvature to an 
ellipsoidal shape commences. 

The results of Fig. 7 thus show that curvature evolution during large elastic defor- 
mation and the concomitant bifurcation are strongly sensitive to the in-plane aspect 
ratio of the rectangular bilayer plate, when the small strain (thin) plate theory analysis 
is employed. 

3.4.    Curvature evolution in orthotropic bilayer composites 

The stable room-temperature shapes of cured, unsymmetric organic laminates have 
been studied in detail by Hyer (1981, 1982). In his work, layers of equal thicknesses 
of laminated square plates (Lx = Ly) were examined for a variety of [0„/90Jr 

composites. In this section, we illustrate how minor perturbations in geometry result 
in large variations in the room-temperature shapes of a [0^90,] T composite which is 
cooled from a curing temperature of 200°C. Figure 8 shows the finite element pre- 
dictions of the evolution of KX and Ky for the organic composite as its temperature is 
dropped (uniformly through the bilayer) by AT from the curing temperature. For 
Lx = Ly and hx{ = h0) = h2( = h9Q) (with Lx= lOO^ + Az)), a unique saddle shape 
(KX = —Ky) evolves prior to the bifurcation temperature, ATb x 110°C. Beyond ATb, 
KX gradually assumes a cylindrical shape; Ky has the same magnitude but opposite 
sign. Small fluctuations in applied loads or moments can "snap" the laminate from 
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one cylindrical shape (say, KX j= 0 and Ky = 0) to another (Ky # 0 and KX = 0), as 
noted in Hyer (1981). 

While a sharp bifurcation temperature exists for the square plate with A, = h2, 
minor geometric imperfections cause large variations in the manner in which the 
saddle shape evolves into an equilibrium cylindrical shape for large AT. Consider first 
the situation where the square geometry is preserved (Lx = Ly), but the thicknesses 
of the two layers are slightly different with h0 = 0.99h90. In this case, around 
AT x 100°C, the saddle shape gradually changes to a stable cylindrical shape with a 
curvature only in the x or y direction. In other words, a 1 % difference in the layer 
thickness erases the sharp bifurcation. Similarly, a 2% difference in side length 
(Ly = 1.02 Lx) produces a gradual transition from a saddle shape to a cylindrical 
shape. The results presented in Sections 3.2-3.4 collectively reveal the sensitivity of 
curvature evolution, during large deformations induced by thermal excursions, to the 
aspect ratio of the rectangular geometry, and to the layer thickness. 

4.    EFFECTS OF PLASTICITY ON LARGE DEFORMATION 

When a metal/ceramic bilayer plate is subject to temperature changes, the thermal 
stresses arising from differential thermal expansion between the layers can induce the 
onset of plastic flow at the interface at a certain critical temperature; the plastic zone 
spreads outward into the ductile layer eventually causing the entire metallic layer to 
be fully yielded. Consider a metal layer of thickness h{ perfectly bonded to a ceramic 
layer of thickness h2 at some initial stress-free temperature. For this large bilayer plate 
subject to an equal biaxial state of stress, the temperature change at which plasticity 
commences at the interface [see (38)] is given by Suresh et al. (1994). 
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When both the metal and the ceramic layer undergo elastic deformation, the unique 
spherical curvature which evolves under small deformation conditions varies linearly 
with temperature. Upon the onset of plastic flow in the metal layer at Ar = AT,, the 
K — AT plot begins to show a non-linear response. For a state of equal biaxial stress, 
the curvature at which plasticity commences in the ductile layer at AT" = AT, is given 
by (38). 

In this section, we examine the effects of plasticity in one of the layers of the bilayer 
on curvature evolution and geometry dependence of large deformation of the bilayer. 
Since this is a topic of much complexity, we confine attention only to situations 
involving small strains and small rotations of bilayer plates. In an attempt to extract 
some general trends for a broad range of applications, two model systems are selected. 
(1) The bilayer system comprising "thick" polycrystalline layers of Ni and A1203 

whose elastic properties were described in Section 3.1. The thicknesses of the Ni and 
A1203 layers are A, = 0.2 mm and h2 = 0.8 mm, respectively; a square geometry 
(Lx = Ly) is considered with several different values of the ratio, Lxj{hi + h2). For the 
purposes of the simulations presented here, the Ni layer is assumed to exhibit an 
elastic/perfectly plastic response, with a temperature-independent yield strength of 
150 MPa. (Full details of the small deformation thermoplastic response of the Ni/ 
A1203 bilayer, including the effects of temperature dependence of thermal and plastic 
properties, and isotropic strain hardening can be found in Suresh et ah, 1994.) (2) An 
Al thin film deposited on an elastic Si single crystal substrate (with in-plane isotropy). 

The Si layer has in-plane isotropic properties, with Esi = 130 GPa, vsi = 0.28, and 
<xsi = 3.0 x 10"6 1/°C. The aluminum layer is considered to be elastic/perfectly plastic 
with the following isotropic properties: EAi = 70 GPa, vA1 = 0.33 and 
<xA1 = 23.5 x 10"6 1/°C, and (thin film) yield strength, ay = 200 MPa. 

4.1.    Ni/Al203 bilayer 

Figure 9 shows the finite element results of the evolution of curvature K as a function 
of temperature change AT for different Lxl(hx + h2) ratios of the square plate of the 
Ni/Al203 bilayer. Here the curvature is normalized by the value of curvature KX for 
the temperature change AT = AT, at which plasticity begins in the Ni layer during 
small deformation, and the temperature change is normalized by AT",. For 
Lxl{h{ + h2) = 50, the curvature increases linearly from AT = 0 to AT = &TX at which 
a plastic zone starts to spread outward from the interface in the Ni layer. The entire 
Ni layer yields before K/K{ X 1.08; beyond this point, the curvature remains essentially 
unchanged with AT. Small deformation elastoplastic analyses reveal that for an 
elastic/perfectly plastic metal bonded to an elastic substrate, the curvature reaches a 
constant saturated value when the metal is fully yielded. The results for 
LJQii + h2) = 50 are the same as those predicted by the small deformation elastoplastic 
theory (Suresh et ah, 1994), as evident from the linear variation of K with AT up to 
AT,. 

An increase in Lxl{hx + h2) to higher values causes a significantly different response 
than what can be anticipated from the small deformation elastoplastic analyses. The 
following observations can be made from Fig. 9. 

• The curvature increases linearly with AT up to AT/AT^ = 0.4, beyond which a 
non-linear variation occurs. 
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Fig. 9. FEM predictions of the evolution of a Ni/Al203 square plate as a function of the temperature 
change for different sizes of the plate. Here, the Ni layer is assumed to be elastic/perfectly plastic with a 
yield strength of 150 MPa (independent of temperature). The curvature and the temperature are normalized 
by the critical curvature AK, and the critical temperature change, AT,, to initiate plastic yielding in the 

nickel layer as defined in Suresh et al. (1994) for equal biaxial stress state (small deformation). 

The saturated value of curvature K\KX corresponding to the full yielding of the 
Ni layer decreases from a value of about 1.07 for Lxj{hx + h2) = 50 to about 0.76 
for Lx/(hi + h2) = 100. In both cases, however, a single spherical curvature evolves 
during both elastic and plastic deformation in the Ni layer. 
A further increase in Lxj{hx + h2) to 150 causes a further reduction in the saturated 
value of the curvature (K/K^ = 0.48). Notice also the significantly more marked 
non-linearity in curvature for AT/AT, < 1.0. 
An additional increase in LJ(hl+h2) to 200 causes a pronounced reduction in 
the Arrange over which a unique spherical curvature results. At AT/ATi x 0.7 
(the location marked B, in Fig. 9), a bifurcation in the solution occurs causing 
an abrupt change from a single spherical curvature to two stable cylindrical 
shapes both of which are equally likely to occur above the bifurcation tempera- 
ture. The finite element solutions shown in Fig. 9 exhibit the typical "pitchfork 
bifurcation", as was also seen in the thin-film elastic analyses of Masters and 
Salamon (1993). 
An increase in Lxl(hl + h2) from 200 to 300 causes a greater degree of non- 
linearity in the K — AT plot prior to bifurcation, a more substantial reduction in 
the bifurcation temperature and curvature (from the location marked B, to B2 

in Fig. 9), and a higher value of the cylindrical curvature along the v axis. 
Although the bifurcation temperature, the corresponding curvature (just prior 
to the point of bifurcation), and the saturation curvature for complete plastic 
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Fig. 10. FEM predictions of the evolution of the curvature of Si/Al 100 mm x 100 mm square plate as a 
function of a temperature change. The temperature and curvature are normalized by the corresponding 
values at the onset of plastic flow during small deformation (biaxial stress state). The aluminum thin-film 
layer is assumed to be elastic/perfectly plastic with a yield strength equal to 200 MPa (independent of 

temperature). The effect of the Al film thickness is indicated. 

yielding of the metal layer are strongly influenced by Lj(hl+h2) for large defor- 
mation, the temperature at which plastic yielding begins in the metal is insensitive 
to Lx/{hx + h2). For hNi/hAl2o, = 1/4, plasticity begins at the Ni/Al203 interface at 
AT« AT, for all the values ofLj(hl + h2) considered in Fig. 9. 

4.2.    Si/Al bilayer 

We now consider the effect of geometry and plastic flow on curvature evolution 
during small and large deformation in a bilayer comprising a Si single crystal and an 
Al thin film. The bilayer is a 100 mm x 100 mm square plate.f The Si thickness is 
fixed at 200 /on. We begin with a consideration of the effect of Al film thickness (Af) 
on large deformation, assuming that the Al thin film exhibits an elastic/perfectly 
plastic response. For the purpose of the present computations, the yield strength of 
the Al film (with in-plane isotropic properties) is taken to be 200 MPa (over the 
temperature range 0-200°C), which is typical of the value reported for Al films 
approximately 1 /mi in thickness (Nix, 1989; Shen and Suresh, 1995b). 

4.2.1. Perfect plasticity in the Al film. Figure 10 presents the computational results 
of curvature evolution during uniform thermal excursions in the Al/Si bilayer, as a 

f Si single crystal circular wafers, typically 75-100 mm in diameter, are commonly used in microelectronic 
applications. The results presented here for square plates of Si/Al also hold for circular wafers of Si with 
Al films deposited on them. Recent advances in wafer design call for larger diameters of Si, i.e. up to 300 
mm. With such larger dimensions, the issues of large deformation during thermal and/or mechanical 
loading would be expected to become more significant. 
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function of the Al film thickness which was varied from 0.1-4 /mi, with all the other 
dimensions fixed, K and AT are normalized by KX and A7^, respectively. For h{ = 0.1 
and 1.0 /mi, temperature variations AT7 of up to 200°C from the initial stress-free 
temperature induce a unique spherical curvature. For hf = 0.1 /mi, both the Al and 
Si layers undergo only small thermoelastic deformation for the entire range of tem- 
peratures considered here; this is reflected as a linear variation of K with AT in the 
elastic regime. Beyond this point, the Al layer becomes fully plastic and the perfect 
plasticity of the thin Al layer results in a constant value of curvature beyond AT = AT,. 
This result for plastic response is the same as that predicted by the small deformation 
biaxial stress model and by the small deformation generalized plane strain model. 
Increasing the Al film thickness to 1 /im causes a slightly non-linear variation of K 

with AT, even in the elastic regime that persists up to the onset of plastic flow, beyond 
which K is independent of AT. A further increase in Af to 2 /im causes a greater degree 
of non-linearity in elastic bending, although AT for the onset of plastic flow in the Al 
layer is unaffected. A small asymmetry in curvature develops between the x and y 
directions in the vicinity of A Tat which plastic flow initiates. A further increase in h{ to 
3 /an causes dramatic changes in the bending response of the bilayer. The thermoelastic 
curvature evolution shows a greater degree of non-linearity. A bifurcation occurs at 
AT/AT, x 0.6, beyond which the spherical geometry of the bilayer is replaced by an 
ellipsoidal/cylindrical geometry. Note that despite the large changes induced in the 
thermoelastic response for Af = 3 /an (as compared to h{ < 2 /mi), the plastic response 
is relatively unaffected. Specifically, the temperature at which the Al film becomes 
plastic is unchanged. A still further increase in ht to 4 /mi moves the AT value at which 
bifurcation occurs down to about Q.5ATU and increases the differences between the 
curvatures along the x and y directions in the post-bifurcation regime. 

4.2.2. Strain hardening in the Al film. The effects of isotropic, linear strain hard- 
ening (du/de = H = 4 GPa) in the Al layer on the geometry changes induced during 
the thermoelastoplastic deformation of the Al/Si bilayer are presented in Fig. 11 for 
Af = 1,2, and 3 /mi for AT up to 400°C. The solid lines in this figure correspond to 
the elastic/perfectly plastic response of the Al layer. The following trends can be 
extracted from Fig. 10. 

• For hs=\ /mi, the small deformation solution is adequate in both the thermo- 
elastic and thermoplastic regimes. For this geometry, strain hardening in the Al 
film merely serves to increase slightly the magnitude of the spherical curvature 
in the bilayer. 

• For h[ = 2 /im, the strain hardening of the Al film causes an increase in the 
anisotropy in the curvatures between the in-plane coordinate directions. When 
the film yields, the curvature of the plate is just below the bifurcation temperature. 
The hardening tends to increase the curvature. 

• For hf = 3 /im, the bifurcation occurs prior to the yielding. The hardening induces 
a non-saturation of the curvature beyond yielding. 

The results of Fig. 11 thus illustrate that strain hardening in the ductile thin film can 
have a significant effect on large deformation and on the equilibrium shapes of the 
bilayer. 
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Fig. 11. FEM predictions of the effect of the plastic behavior of the Al thin film on the evolution of 
curvature in the Si/Al bilayer (100 mm x 100 mm square plate) as a function of temperature change. The 
substrate thickness is equal to 200 jxm. The aluminum layer is considered either perfectly plastic (solid) or 

with a linear, isotropic hardening equal to 4 GPa (dashed). 

5.    EFFECTS OF COMPOSITIONAL GRADIENTS ON LARGE 
DEFORMATION 

As discussed in Section 1.3, the introduction of compositional gradients between 
two layers offers the possibility to control the thermomechanical deformation of 
layered structures. In this section, we examine the effects of compositional gradients 
on the large thermoelastic deformation of two model systems. (1) A Ni/Al203 layered 
structure with a composite layer (also referred to as a functionally graded material 
layer or FGM) sandwiched between the layers of homogeneous Ni and homogeneous 
A1203. The relative volume fraction of Ni varies linearly within the gradient layer. 
The trilayered Ni/Gradient/Al203 plate analyzed here is of square shape with 
Lx = Ly= 100 mm. The relative thicknesses of the three layers were systematically 
altered in an attempt to examine the effects of layer thickness on large deformation. 
(2) A thin-film trilayer system comprising a compositionally graded layer of 
Inai2Ga0.88As and GaAs (wherein the volume fraction of the GaAs varies linearly 
from one end of the layer to the other along the thickness direction) which is sand- 
wiched between a homogeneous GaAs layer (thickness = 10 pm) and a homogeneous 
In0.12Ga088As layer (thickness = 100 /mi). The in-plane dimensions of the trilayer 
plate are 30 mm x 30 mm. Several different thicknesses of the graded layer were 
analyzed. The thermoelastic properties of Ni and A1203 were listed in Section 4. For 
the purposes of the simulations here, the Ni layer were assumed to be elastic/perfectly 
plastic with an yield strength of 150 MPa for the entire range of temperatures 
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Fig. 12. Contours of constant normalized curvature to induce bifurcation in the tri-layered system, Ni/ 
Gradient/Al203, as a function of the material distribution through the thickness. For this calculation, the 

large deformation theory for elastic multilayers, Section 2.6, was used. 

examined. Both the Ni and A1203 layers were assumed to be isotropic, with the same 
temperature at all locations during temperature excursions. The properties of the 
InGaAs system are: Young's modulus, E = 86 GPa, Poisson's ratio, v = 0.31, and 
the coefficient of thermal expansion, ac = 6.9 x 10~6/°C The properties of GaAs are: 
E = 81 GPa, v = 0.3, a = 8.0 x 10"6/°C. Both materials were modeled as isotropic, 
and the thermoelastic properties were considered to be constant over the range of 
temperatures analyzed in the study. In the graded region, the effective properties for 
E, a and v were linearly interpolated over ten steps of equal increments. 

5.1.    A graded layer between Ni and Al203 layers 

Consider first the thermoelastic response of the Ni/Gradient/Al203 trilayer system 
focusing on the occurrence of bifurcation during large deformation. Consider arbi- 
trary thicknesses of the three layers, Fig. 12, with h2 — a, 2a, and hx — a denoting the 
thickness of the Ni, gradient and A1203 layers, respectively. The following two non- 
dimensional parameters 

2a 

hx +h2' 
h-, 1 

Ph 
hi+h2     p+l 

(46) 

define the full range of relative thicknesses of the three layers. The ordinate (pa -> 0) 
corresponds to the Ni/Al203 bilayer; ph -> 0 refers to the limiting case of a thin Ni 
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Fig. 13. Contours of constant normalized temperature to induce bifurcation in the tri-layered system, Ni/ 
Gradient/A1203, as a function of the material distribution through the thickness. For this calculation, the 

large deformation theory for elastic multilayers, Section 2.6, was used. 

film on a thick A1203 substrate, ph -> 1 and pa = 0 corresponds to a thin A1203 film 
on a thick Ni substrate, and ph = 0.5 and pa = 0 corresponds to the case of a Ni/ 
A1203 bilayer where the two layers are of equal thickness. pa = 1 and ph = 0.5 is the 
limiting case where the entire composite is a single graded layer (with no homogeneous 
layers of Ni or A1203) whose composition varies linearly from z = 0 to 
z = 2a=(h1 + h2). The sides of the triangle with corners at (pa = 0.0, ph = 0.0), 
(pa = 1.0, ph = 0.5), and (pa = 0.0, ph = 1.0) contain within them all possible relative 
thicknesses of the three layers. 

Figure 12 shows the numerically predicted contours of constant curvature K = Kb 

(at which bifurcation occurs during large thermoelastic deformation) in a square plate 
of the Ni/Gradient/Al203 trilayer for arbitrary variations in the relative thicknesses 
of the three layers. Here the normalized curvature, kh = KbL

2J(hi + h2) is used because 
this normalization holds for any Lx. It is seen that for thick multilayers with graded 
interfaces, vast changes in relative thicknesses of the layers promote only small changes 
in kb (about 10% for the conditions of the simulations described in Fig. 12). The 
maximum and minimum values of kh occur near the regions of (ph « 0.9, pa < 0.15) 
and (ph K 0.3, pa < 0.3), respectively. This results from the fact that bifurcation arises 
as a consequence of a geometric incompatibility. 

The temperature change needed to cause bifurcation, ATb, for the trilayer system, 
however, is more sensitive to compositional gradation. Figure 13 shows contours of 
constant temperature ATb at which bifurcation occurs in the thermoelastic solution 
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Fig. 14. Contours of constant critical aspect ratio of the plate, LJ(h, +h2), for which the temperature of 
bifurcation predicted by the large deformation elasticity theory (Section 2.6) and the critical temperature 
for the onset of yielding as predicted by the small deformation elastoplasticity theory (Suresh et al., 1994) 
are equal. The triangle shape represents any material distribution of the tri-layered system, Ni/Gradient/ 

Al,Ov 

for a wide range of relative thicknesses. Here the normalized bifurcation temperature, 
ATb = AI^Aa^/fA, +/z2)

2, is plotted so that the indicated trends are valid for any Lx. 
For the conditions of the simulations, ATb is the lowest for a Ni/Al203 bilayer of 
comparable layer thickness (with no graded interlayer). ATb is increased by more 
than a factor of two if a gradient layer replaces the homogeneous Ni and A1203 (with 
hx + h2 fixed). The maximum values of ATb are seen near the corners of the triangular 
plot with (ph,pä) coordinates at (0,0) and (1,0) 

We consider next the conditions governing the onset of plastic flow in the Ni/ 
Gradient/Al203 trilayer. For this purpose, we specifically seek those geometrical 
combinations of the three layers for which the temperature for the occurrence of 
bifurcation during large deformation, ATb (which is predicted from the analytical 
formulation presented in Section 2.6), is equal to the temperature for the onset of 
plastic yielding, AT,, which is the temperature for the onset of plastic flow during 
small deformation, as described in Giannakopoulos et al. (1995). Contours of constant 
LJ(hi + h2) for which ATb = AT, are plotted in Fig. 14. It is clearly evident that the 
geometry of the trilayer strongly influences the competition between instability and 
plastic flow. As the thickness of the graded layer, 2a, increases (for a fixed total 
thickness of all layers), bifurcation occurs at a lower value of LJ(hl+h2). For the Ni/ 
A1203 bilayer, especially near the limiting case of a Ni or A1203 thin film, the 
Lx/(hl+h2) ratio needed to cause bifurcation increases by nearly four times. 
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ATAcc L^/hf 
Fig. 15. FEM predictions of the normalized curvature as a function of the normalized temperature change 
for three different geometries of the tri-layered system, In0|2G08gAs/Gradient/GaAs. Three values of the 

thickness of the gradient are considered : 10, 50 and 90 /im. 

5.2.    A graded layer between In0A2Ga0iSAs and GaAs thin films 

Figure 15 shows the finite element predictions of the normalized curvature tcLx/ht 

as a function of the normalized temperature change, ATAaLl/hf for the graded 
trilayer system: In012Ga088As/Gradient/GaAs. Here three different thickness levels of 
the graded layer are considered for fixed thicknesses of GaAs (10 fim) and 
In012Ga0.88As (100 fim). These results are normalized such that they hold for any 
specific value of Lx; the finite element calculations were performed for a square plate 
with dimensions 30 mm x 30 mm. 

Figure 15 indicates that increasing the gradient layer thickness causes a significant 
increase in the temperature for the onset of bifurcation. This increase is more pro- 
nounced for the higher thickness levels (i.e. from 50-90 ^m). Increasing the gradient 
layer thickness also produces increased non-linearity in the curvature/temperature 
plot at a lower temperature level, and reduces the curvature in the pre-bifurcation 
regime. As with the results presented for Ni/Al203 and Si/Al, it is evident from Fig. 
15 that compositional gradation does not suppress the occurrence of bifurcation. 

6.    CONCLUSIONS 

(1) In this work, closed form expressions have been derived for the deformation of 
a bilayer plate with isotropic elastic properties that is subjected to general anisotropic 
loading, (e.g. non-equibiaxial strain mismatch), within the context of small defor- 
mation elasticity theory. The deformation of the bilayer plate is fully characterized 



and the ratio of the shear moduli, 
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by the ratio of the two thicknesses hjh2, and two elastic mismatch parameters, which 
are the ratio of the biaxial moduli, 

EAI-V2) 
E2(l -v,)' 

£i(l+v2) 
E2{\+vly 

for the two layers. The principal curvatures, for a given strain mismatch between the 
layers, are independent only if the two layers have the same Poisson's ratio. In general, 
for a multi-layered material there is coupling between the two orthogonal (in-plane) 
curvatures if the Poisson ratio varies through the thickness (in the case of a non- 
equibiaxial strain mismatch). This coupling is quantified by means a parameters, vK 

(which is the ratio of curvatures measured along the two in-plane coordinate axes), 
as a function of the elastic constants and thicknesses of the two layers. 

(2) The main advantage of the classical Stoney (1909) formula is that a direct link 
can be established between the curvature of a substrate and the stress in the thin-film 
(deposited on the substrate). In this approach, one assumes isotropic responses for 
the substrate and the thin film, isotropy of the strain mismatch, and a constant stress 
in the thin film. A knowledge of the origin or the magnitude of the strain mismatch 
for small deformation is not required. In this paper, we have presented a new general 
extension of the Stoney approach to any isotropic bilayered plate with arbitrary layer 
thicknesses or a trilayer with a graded interface (under anisotropic strain mismatch). 
With this extension, the measurement of the two principal curvatures and the orien- 
tation of the principal directions uniquely provide the stress field at any location 
through the thickness for small elastic deformation. This result has also been gen- 
eralized for a three-layered plate which contains a compositionally graded layer 
inbetween two homogeneous layers. The analysis for this latter case requires a knowl- 
edge of the strain mismatch variation in the graded layer and the elastic property 
variation through the thickness. 

(3) For small deformation, an elastic bilayer subject to temperature variations 
under generalized plane strain conditions exhibits a larger curvature than under a 
state of equal biaxial stress. Curvature evolution during thermoelastic small defor- 
mation under generalized plane strain also constitutes an upper bound for all possible 
stress states (small or large deformation with small strains) of bilayer plates. 

(4) For large thin plates, the small deformation theory can deviate significantly 
from the exact solution when the deflection of the edge of the plate is of the same 
order as the thickness. Analytical formulations can provide accurate descriptions of 
curvature in large deformation. It is shown that as a general rule of thumb, the 
geometric non-linearity of the curvature with respect to the strain mismatch occurs 
for a critical size of the plate L larger than -JRht, where ht is the thickness and R is 
the radius of curvature. This result is not sensitive to the stress distribution through 
the thickness since the phenomenon is mainly driven by a geometric incompatibility 
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introduced by the curvature. The non-linearity can result in a bifurcation in the 
solution for curvature evolution in some specific cases where the geometry of the plate 
has a high symmetry or the material properties have certain non-isotropic variations 
(e.g. square, equilateral triangle, circle shapes of the plate for isotropic layered 
materials, and asymmetric distribution of properties for orthotropic materials). For 
L > 6y^Rht, the solution of the generalized plane strain problem gives a good approxi- 
mation for the curvature in the longer direction of the plate. 

(5) Thermoelastic bending of bilayer plates with in-plane thermal and elastic iso- 
tropy produces a unique spherical curvature during small deformation. For certain 
geometries (e.g. square shape of the layered plate), a bifurcation occurs in the solution 
for curvature. The post-bifurcation equilibrium shapes during large elastic defor- 
mation of the layered plate are ellipsoidal (or in the limiting case, cylindrical), with a 
larger and a smaller principal curvature. The occurrence of such bifurcation, however, 
is sensitive to the in-plane dimensions (specifically, the length to width ratio) of the 
bilayer. The plate theory predicts that the bifurcation can be eliminated, in some 
cases, by simply changing the geometry from a square plate to a rectangular plate 
with slightly different side lengths (Lx # Ly). 

(6) The stable configuration for small elastic deformation in orthotropic bilayer 
composite laminates is a saddle shape, which upon bifurcation transforms into two 
different cylindrical shapes. Small variations in the relative thicknesses of the layers 
can completely suppress the existence of such bifurcation; they may instead produce 
a gradual transition from an equilibrium saddle shape at small deformation to an 
equilibrium cylindrical shape at large deformation. 

(7) The temperature at which bifurcation occurs, the curvature just prior to the 
onset of bifurcation, and the saturation curvature corresponding to perfect plastic 
yielding of the entire metal layer in a bilayer are strongly influenced by the length to 
thickness ratio, LJ(hi+h2), during large deformation. However, the temperature at 
which plastic yielding initiates in the metal is relatively insensitive to LJ(hi + h2). 
This temperature is nearly the same as that predicted from the small deformation 
elastoplastic theory (Suresh et ai, 1994). The magnitude of the saturation curvature, 
however, is sensitive to the extent of large deformation and, hence to LJ(hi + h2). The 
maximum value of curvature attainable upon complete yielding of the metal layer in 
a metal/ceramic bilayer system is the same for small deformation biaxial stress and 
generalized plane strain. This limiting curvature is also the same during large defor- 
mation (small strains). 

(8) For thin films on substrates, increasing the metal film thickness (for a fixed 
substrate thickness) can enhance the propensity for non-linear elastic deformation 
and bifurcation at lower AT. Beyond bifurcation, strain hardening in the yielded film 
induces an increase in the anisotropy between curvatures along the in-plane principal 
axes (i.e. the shape of the film/substrate system is made more ellipsoidal). 

(9) The presence of a graded layer inbetween two homogeneous layers can sig- 
nificantly change the in-plane stresses due to thermal strain mismatch and delay the 
onset of plastic flow. However, for these geometries, bifurcation is not minimized 
significantly or erased by compositional gradation because curvature evolution is not 
altered markedly by the graded layer. Larger deformations are accommodated by 
graded materials before failure or yielding since the stresses are lower. 
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APPENDIX 

The stress/curvature for the graded trilayer geometry described in Section 2.4 can be given 
in a simple way in terms of the three dimensionless parameters 

hi       „      a       -       El(l-v2) 
h2 h2 £2(l-v,) 

where a is equal to half of the thickness of the graded layer as shown in Fig. 1 (b). 
The mean stress field through the thickness is 

a™ = EBi(F+AF+z^')Km    in layer 1, 

er™ = EBi(z)(F+AF- + zX~x km    in the graded layer, 

cr? = Em(F-AF+ zl~l)Km    in layer 2, (A.2) 

where 

F = ^(-3 + &ä-6ä2 +ä4 +Em(-8ä+12p-12p3 +8äp,) + Eli(-ä* + 6a2p2 -Sap3 +3p4)), 
ß 

(A3) 
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AF=-^(-3-6a2+a4+£Bi(6a2-2fl4-12p-18p2 + 6a2p2-12p3) + £ffi(a4-6fl2p2-3p4)), 

(A4) 

and 

ß = 2(l+pY(3ä-ä3 + EBi(-3ä-3ä2 + 2ä3 + 9p-3a2p + 9p2 -3äp2) + E2
Bi(-ä3 + 3ap2)). 

(A.5) 

The shear stress resulting from a twist curvature kx), is given by the same expressions by 
replacing the biaxial modulus Ebi by the shear modulus and the ratio EBi by ß. 
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SOME ELEMENTARY CONNECTIONS BETWEEN 
CURVATURE AND MISMATCH STRAIN IN 
COMPOSITIONALLY GRADED THIN FILMS 

L. B. FREUND 

Division of Engineering, Brown University, Providence, RI 02912, U.S.A. 

ABSTRACT 

A thin film structure with through-the-thickness variation of properties and/or mismatch strain is 
considered. The relationship of the overall curvature of the film to the variation of properties and mismatch 
strain is reviewed. It is shown that, if the material properties are known, the mismatch strain distribution 
in the film can be expressed in terms of the dependence of curvature on film thickness. In addition, the case 
of film growth under conditions for which the mismatch strain of deposited material depends on the local 
strain conditions of the growth surface is considered. By means of an illustration, it is shown that the final 
state of strain within a free film following growth depends on the constraint conditions that were imposed 
on the film during its growth. 

INTRODUCTION 

Thin film structures with through-the-thickness variations in composition and/or 
mismatch strain are in wide use in microelectronics and other applications. In thin 
metal films, the grain structure of the material varies as the film grows, from random 
at the nucleation surface to textured columnar for substantial amounts of growth. In 
epitaxial strained layer semiconductor materials, a layer with continuously graded 
composition can provide a transition in lattice parameter from one material to another 
in a way that minimizes the tendency for formation of dislocations or other defects. 
Grading can also suppress the tendency for island formation during growth in material 
systems with large mismatch in lattice parameter. In general, the variations in com- 
position may be abrupt or graduated, monotonic or periodic. The internal (residual) 
stress associated with this compositional variation provides a driving force for various 
failure modes in these material systems, so methods for measuring this stress and for 
controlling its effects are of interest. Also, characterization of the mechanical state of 
layered material systems is frequently based on measurements made by means of the 
wafer curvature method, so knowledge of the connections between curvature and 
mismatch strain are central to interpretation of data (Flinn, 1989). 

The physical system being considered here is a thin, plate-like structure. The total 
thickness h is much less than the lateral dimensions, and the details of the mechanical 
fields very near the lateral edges are ignored. The remote lateral edges of the layer are 
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free of applied loading, in the sense that the resultant bending moment, twisting 
moment and extensional force all vanish. An elastic mismatch strain which varies in 
a general way through-the-thickness direction of the film is present. This strain may 
arise from thermal expansion mismatch, epitaxy with lattice parameter mismatch, 
chemical reaction with volume and/or phase change, or microstructural evolution, 
the mismatch strain can have any piecewise continuous variation, so either abrupt 
interfaces with jumps in mismatch strain, smoothly graded mismatch strain distri- 
butions, or any combination of the two, can be taken into account. The properties of 
the material, namely the elastic constants and coefficient of thermal expansion, can 
vary across the thickness. Temperature may also vary across the thickness in a general 
way, but this is assumed to be reflected implicitly in the mismatch strain. Mechanical 
fields are referred to a rectangular coordinate system oriented as shown in Fig. 1, so 
that the z direction is normal to the plane of the layer with z = 0 lying in the bottom 
face of the layer. The conditions imposed on mechanical fields by equilibrium, material 
behavior and compatibility are considered to obtain elementary formulas for the 
relationship between curvature and mismatch strain. 

Two other issues are addressed within this elementary framework. It is well-known 
that the distribution of mismatch strain through the thickness of such a film at its 
final thickness cannot be determined from knowledge of the final curvature of the 
film. However, if the distribution of material properties across the layer is known, it 
can be shown that the mismatch strain distribution can be expressed in terms of 
curvature as a function of film thickness as the thickness increases. Thus, if curvature 
can be measured continuously during film growth, this measurement can provide 
information on the distribution of mismatch strain. Such observations are currently 
being carried out by Spaepen and coworkers (1996). 

The second issue concerns film growth in cases when the development of mismatch 
strain depends on local strain conditions on the growth surface. If this is the case, 
then the mismatch strain distribution that evolves may depend on the constraint 

1 

reference 
plane 

Fig. 1. Orientation of the rectangular coordinate system with respect to the layer, which has total thickness 
h. The face z = 0 is the reference plane for mismatch strain. P(z) represents the variation of any system 

parameter across the thickness. 
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conditions on the film during its growth. The idea is illustrated for film growth with 
a local relative strain deposition criterion. 

GENERAL CURVATURE EXPRESSIONS 

Both the top surface z = h and the bottom surface z = 0 of the layer are free of 
applied traction. Under the stated conditions, the layer is invariant under translation 
in either the x or y direction. It follows that all fields are independent of x and y, and 
that three stress components vanish identically, namely 

0"zz  = ffxz  = Oyz  = 0. (1) 

If the film is cut by any plane normal to the layer surface, then the absence of any 
externally applied loading implies that the net force, bending moment and twisting 
moment due to the traction on that cut must be zero, that is 

Ch 
ff,y(z) dz = 0, 

•h 

zffjj(z)dz = 0   for   i,j = x,y. (2) 

The mismatch strain is defined in the following way. The bottom surface z = 0 is 
identified as the reference plane for mismatch strain. The mismatch strain on any 
intermediate plane at z is then the elastic strain which must be imposed to render it 
compatible with the mismatch strain; the in-plane components of mismatch strain 
are denoted by e!£?(z), ei™'(z) and 4™'(z). For example, if the mismatch strain is due 
to epitaxy and the mean lattice parameter in a certain direction varies as a(z), then 
the mismatch extensional strain in that direction at z is — [a(z) — a(0)]/a(z). It is noted 
in passing that the strain defined in this way is equal but opposite to Eshelby's 
stress-free transformation strain (Eshelby, 1957). The remaining components of the 
mismatch strain array e^ are implied by (1). 

The total strain in the film is not compatible, in general. However, the incom- 
patibility is represented by 4m)(z). Thus, the total strain can be written as the sum of 
the incompatible part plus a compatible part, 

Et](z)=B<jf>{z) + ${z). (3) 

The second term on the right side of (3) is subject to the compatibility equations 
which, in this case, reduce to the three uncoupled equations 

d2e<c) 

^(z)=0,    i,j = x,y. (4) 

Thus, the condition imposed on the strain by compatibility is that 

eff (z) = - zKy + efl,    i,j =x,y. (5) 

The quantity stf is the strain of the reference layer z = 0, KXX is the curvature of a 
reference plane coordinate line in the x direction, Kyy is the curvature of a reference 
plane coordinate line in the y direction, and + Kxy is the curvature of the line x = ±y 
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on the reference plane, resulting in zero mean curvature of that plane for this com- 
ponent of deformation. 

Finally, the response of the material is linearly elastic 

o,j(z) = Cijkl(z)skl(z). (6) 

Although the results reported here can be obtained for an anisotropic material of 
arbitrary orientation, only the relatively simple and transparent results for the case 
of elastic isotropy with constants E, v are included. 

If stress is now expressed in terms of the mismatch strain and the geometrical 
parameters KU and e£\ then the result of imposing the equilibrium equations (2) is a 
system of linear equations for the geometrical parameters. For the case of uniform 
Poisson ratio v but general variation in modulus E(z), the solution is 

/■(i)r(O)      r(0)7-(i) 7-(2)/(0)_r(i) T-(i) 

K..(h) =        ij U ,   e®(h) =        '[ " ,   U = x,y, (7) 

where 

7«(A) =     zkE(z)dz,    Jf(h) = zkE(z)sf(z)dz, (8) 

p,/(i-o ,-j 
\E(Z)/2(l+v)    i±j 

Thus, given the mismatch strain and the material properties, these formulas provide 
expressions for the curvature and strain of the reference plane within the film. The 
curvature or strain of any other plane can be found from these. Similar formulas have 
been reported recently by Freund (1993) and by Kroupa (1993). 

The formulas (7) provide a generalization of some of the well-known special results 
for problems in this class, such as plate bending with a temperature gradient (Boley 
and Weiner, 1960) or the Stoney formula for curvature of a substrate due to a 
relatively thin strained layer on its surface (Stoney, 1909). The Stoney formula is 
obtained on the assumption that the thickness of the uniformly strained layer, say h2, 
is infinitesimally small compared to the thickness of the substrate, say A,. It is a 
straightforward matter to determine the correction to the Stoney formula when this 
condition is relaxed somewhat. For a uniform equi-biaxial mismatch strain e(m) in a 
layer of thickness A2 and biaxial modulus M2 = E2/(l-v2) bonded to a substrate of 
thickness hx and biaxial modulus Mx = Exj{\ -v,), the distance of the neutral plane 
from the reference plane is found to be 

z=4 + !^ (10) 
3      6 «i 

and the curvature of the neutral plane is 

6s(m) h2 M2     6e(m) (h2\
2 M2(MX -4M2) 

A, Mx       A,   \hx M\ 
(11) 
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For equal biaxial moduli M, = M2, the ratio of the second term to the first term in 
the curvature result has magnitude 3h2\hx. Thus, when h2/h1 =0.1, neglect of the 
second term results in a 30% error in the estimate of curvature based on the Stoney 
formula. 

A second illustration of the use of the general formulas is provided by the category 
of bimaterial systems with a region of linear compositional gradation of thickness h2 

between homogeneous regions of thickness hx for material 1 and thickness h3 for 
material 3. The composite structure is considered at a temperature differing from the 
reference temperature by the spatially uniform AT. All other system parameters vary 
with z as 

P(z) 

Px for 0 < z < hi 
fh, +h2—z 

+ P3[—r--)   foThl<z<hi+h2 (12) 

for hi +h2 < z <hx + h2+h3 

where Px and P3 are constants. Here again, P(z) represents any system parameter 
(modulus, thermal expansion coefficient, epitaxial mismatch strain). A common spe- 
cial case occurs when the thickness h2 of the intermediate region is zero. 

Under these circumstances, the integrals appearing in (8) are readily evaluated to 
yield 

2/0 = M1(2h1+h2) + M3(h2+2h3), 

67, = Ml(3h2 + 3h}h2+h2
2) + M3(3h1h2 + 2h2

2+hih3+h2h3 + 3h2
3), 

12/2 = Ml(4hj + 6h2h2+4hlh
2

2 + hl) + M3(6h2h2 + 8h]h
2

2 + 3hl 

+ I2hjh3+24hlh2h3 + \2h\h3 + \2h,h\ + I2h2h
2

3+4h3
3), 

6J0 = Ml[-s3
m)h2+AT(\2<xlh1+4aih2+a3h2)] 

+ M3[-2e3
m)(h2+2h3) + AT(u1h2+2a.3h2+a3h3)], 

\2JX = M1[-e3
m)h2(2hl+h2) + AT(6a1hj+4alhlh2+2oc3hlh2-ulh

2
2+a3h

2
2)] 

+ M3[-s(
3
m)(4hlh2 + 3h2

2 + \2hxh3 + \2h2h3+6h\) 

+ AT(2alhlh2+4a3hlh2+a1hj + 3a3h
2, + \2a3hxh3 + \2<x3h2h3+6a3h

2
3)], 

where the association of subscripts with the three regions is obvious, and £(!m) = 0. 
These simple algebraic expressions are exact. As an illustration, these formulas have 
been applied to the case of a GaAs/In^Ga, _A-As/In012Ga0 88As ternary epitaxial struc- 
ture, using the material parameters given by Nakajima (1991). The system is illustrated 
in Fig. 2 and the stress distribution is shown in Fig. 3. The strong influence of the 
thickness of the intermediate graded layer on the magnitude of the stress in the top 
layer is evident from this figure. If the results obtained by the above formulas are 
compared to the computational results of Nakajima (1992), it is observed that the 
stresses computed here exceed those reported earlier by a factor of 1/(1 — v) because 
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Inn 12 030.88 AS                                      h3 

1 L 

InxGa^xAs (0<X<0.12)      z    h2 

GaAs hi 

Fig. 2. A compositionally graded crystalline layer with a homogeneous GaAs portion of thickness h]t a 
linearly graded portion of thickness h2, and a homogeneous In012Ga0.ggAs portion of thickness h3. 

this factor was erroneously omitted from the elastic stress-strain relation for biaxial 
states of stress [see equation (3) in Nakajima (1992), for example]. 

DEPENDENCE OF MISFIT STRAIN ON CURVATURE HISTORY 

In this section, it is demonstrated that the misfit strain distribution through the 
thickness of a strained layer can be expressed in terms of the dependence of curvature 
on film thickness as the film is formed. This is done under the conditions that the 
material properties are known and that the film formation process is time independent. 

0.3 
co ,A 
Li- U.2 X<^ _c 0.1 
CO 
CO 

0.0 ^ /••yj'             i ■. v        %*    ^^ •*-* /•'.'jr                         •   \            ■>>        ^^ CO /.i£r                        1   '.    \               v 
1 -0.1 

Jr                              \    \     \ 0.14 mm 
N -0? r                                     |     \      \          0.1 mm 
Ü hi = 0.1 mm              I     \       V 

\      .           0.05 mm 
-0.3 h3 = 0.01 mm             1      ''•■''„„ 

i          0.03 mm 
-0.4 AT = -500 C              i , 

_n c 
" h2 = 0.01 mm 

i         .         i , 1— , 
0.00 0.05 0.10 0.15 0.20 0.25 

z - distance in mm 
Fig. 3. Stress distribution across the thickness of the layer depicted in Fig. 2 due to the epitaxial mismatch 
plus a temperature change of AT = - 500°C for five values of the thickness of the intermediate graded 

portion of the composite film. 
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For purposes of illustration, the simple situation with 

e£>=e£>=e<m\    e£> = 0 (13) 

and 

E(z) = constant (14) 

is considered. In this case, the curvature expression in (7) reduces to 

6 
<h) -      h2 

'h 12 
e(m)(z)dz+ — 

'h 

ze(m)(z)dz. (15) 

This expression can be inverted to solve for e(m)(z) by first multiplying through by A3 

and then differentiating with respect to h several times. Finally, an integration is 
required to obtain the desired result. A constant of integration arises in this step, but 
it can be shown to be zero by noting that K(JI) is continuous in h if e(m) is bounded, so 
that K(Ä!) = 0 for arbitrary A, 5* 0 if e(m)(z) = 0 for 0 < z < hx. The result is 

£(m)(h)=\hK(h)+-,h2K\h)+~ K(z)dz. (16) 

This is the desired expression for the strain distribution in terms of the history of the 
curvature of the film. For the case when e(m)(z) = 0 for 0 < z < hu several strain- 
curvature pairs are shown in Fig. 4. This analysis, which can also be applied for 
unequal biaxial mismatch strains or other cases, seems to provide a generalization of 
some residual stress formulas given in Baldwin et al. (1955). 

MISMATCH STRAIN DEPENDING ON LOCAL DEPOSITION 
CONDITIONS 

Suppose that the process of growth of a thin film takes place by successive addition 
of infinitesimally thin layers of material to the growth surface of the film to increase 
its thickness. The magnitude of the local mismatch strain is determined by the physics 
of the attachment process. For example, if the materials are single crystals and the 
attachment process is epitaxial, then the mismatch strain is determined by the relative 
mean lattice parameters, independent of other factors, including the state of strain of 
the growth surface. In contrast, consider a growth process whereby a thin layer is 
deposited as a melt. Due to the loss of heat, it subsequently solidifies with no residual 
stress. Then, due to further cooling and/or shrinkage a mismatch strain with respect 
to the original deposition surface develops. Under such conditions, the magnitude of 
the mismatch depends on the state of strain of the deposition surface prior to addition 
of the layer. The purpose in this section is to derive a differential equation for the 
mismatch strain as a function of position through the thickness for such a situation. 
Again, attention is limited to the simplest case of equi-biaxial extensional mismatch 
strain. 
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Suppose that an unstrained substrate layer with thickness hx is clamped, and 
additional material is added layer-by-layer onto its surface in the manner described 
above. If the clamping prevents both bending and extension, then each layer is added 

(a) 

c 
3 

£• 
CD 
L- 

u 
CB 

(b) 

c 
3 

& 
CO 
L_ 

!5 
u 
CO 

Fig. 4. Examples of curvature-mismatch strain pairs according to (16). (a) Curvature increasing linearly, 
(b) curvature increasing with oscillations, and (c) curvature increasing to a plateau level. 
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(c) 

c 
3 

CO 

1.0 1.2 1.4 1.6 

h/h., 
Fig. 4. (Continued). 

1.8 2.0 

under identical conditions and its mismatch strain is some constant, say 

[0,     0 ^ z < A, 

[e*,    A, ^ z <h 
„(m) 

(z) (17) 

If the film is then released at some final thickness A, it will take on the curvature given 
by (7), namely 

™      6 hl 
l- (18) 

The uniform strain distribution and the dependence of curvature on total film thick- 
ness for this case are shown in Figs 5 and 6, respectively, in the graphs labeled 
"clamped". The complete strain distribution following relaxation of the clamping 
constraint is given for five values of final thickness in Fig. 7. 

Now, instead of the substrate being clamped, suppose that the film is free from 
constraints. The first strained lamina is added with mismatch strain e*. This induces 
slight bending and extension of the whole film, however, so that the conditions on 
the growth surface are modified for addition of the next lamina. If the mismatch 
strain is e* with respect to the surface on which it grows that it must satisfy the 
condition 

e(m)(A)=e* + K(A)A-e(r,(A), (19) 

where K(A) and e(r)(A) are given in terms of e(m)(z) in (7). If material properties are 
uniform through the entire thickness of the film, this condition reduces to 
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0.0 

free 

clamped against bending 

clamped 

1.0        1.1        1.2        1.3        1.4        1.5 

z/h., 
Fig. 5. Mismatch strain distribution in the film for several possible constraint conditions during growth 

according to a local strain growth condition. 

clamped against 
bending 

clamped 

0.0 
1.0        1.1        1.2        1.3        1.4        1.5 

h/h., 
Fig. 6. Curvature versus film thickness for several possible constraint conditions during growth according 

to a local strain growth condition, corresponding to mismatch strain in Fig. 5. 

£(m)(/0-e* + h 
£<m>(z)dz-- ze(m)(z)dz = 0. (20) 

Multiplication by h2 and differentiation with respect to h leads to the ordinary differ- 
ential equation 
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z/h., 
Fig. 7. Distribution of total elastic strain in the film for growth according to a local strain criterion under 

clamped conditions, followed by release of the constraint after growth, for five values of film thickness. 

d2E^ 26* 

An obvious boundary condition on the strain distribution is that 

£(m)(/*i) = £*• 

A second boundary condition 

de{m) 4e* 

dh hx 

(21) 

(22) 

(23) 

follows from the expression obtained by differentiating (21) once with respect to h, 
and evaluating the result at h = hx. Integration of (21) subject to these conditions 
yields the solution 

f0, 
.(m)/_\  _J e(m,(z) 

0^z< 

2z*\n-—he*  6-: 5 I,    A, ^ z ^ h 
Ai h 

(24) 

This expression gives the variation of mismatch strain due to the changing mechanical 
conditions on the growth surface. The distribution is shown as the curve labeled 
"free" in Fig. 5. As is evident from the equation itself, the distribution is nearly linear 
in z with a fairly large slope. Thus, the mismatch strain can differ significantly from 
its initial value, even for quite a thin film on an unstrained substrate. For the particular 
case when the added layer is thin compared to the substrate, that is, when h — hx « hu 

the mismatch strain varies linearly according to 
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Fig. 8. Distribution of total elastic strain in the film for growth according to a local strain criterion under 

unconstrained conditions, for five values of film thickness. 

p(m) 
(*) 1+4- 

-A, 

A, 
A, <z< 

The corresponding curvature, found from (7), is given by 

K(h) icH'i *■<* 

(25) 

(26) 

and it is shown in Fig. 6 as the curve labeled "free". The strain of the reference plane 
for this case is 

h 
E(t)(h) =2e*ln —,    A, < h. (27) 

The complete strain distribution across the thickness of the film is shown in Fig. 8 
for five values of final thickness. Note that the total strain at the growth surface in 
each case is 6*, but that the mismatch strain is something different from that value, 
depending on the local growth conditions. For purposes of comparison, the complete 
strain distributions for the clamped and free cases are both shown in Fig. 9 for the 
particular case of A/A, = 1.2. The plot illustrates the difference which may be expected 
in the total strain in the film due to constraint conditions. 

As a situation intermediate between the cases of a completely free film and a rigidly 
clamped film, the case of a film clamped against bending but free to undergo in-plane 
extension can be considered. The result of doing so is the mismatch strain distribution 

[0, 0 ^z< A, 

s(ra)(z)=< 
e#ln— +£*,    A, < z ^ h 

A, 

(28) 

and the corresponding curvature is 
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Fig. 9. Comparison of the distribution of total elastic strain in the film for total thickness h = 1.2/i, for the 

clamped case from Fig. 7 and the free case from Fig. 8. 

"«-4H}               (29> 
The mismatch strain distribution and the dependence of curvature on thickness for 
this case are also shown in Figs 6 and 7 in the curves labeled "clamped against 
bending". 
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ABSTRACT 

In many engineering applications materials are required to satisfy two or more selection criteria. An 
example is the provision of wire for the winding of high field magnets, and a methodology is proposed here 
that links these design criteria to the processing of fine scale composites. In developing the descriptions of 
the dependence of both mechanical strength and resistivity on the microstructural scale of the composite 
the modelling reveals the importance of new processes such as interface scattering and energy storage 
mechanisms at the interface that give new insights into the behaviour of fine scale structures. Finally from 
consideration of the scaling laws for strength and conductivity, it is possible to develop a comparison 
between the efficiencies of microscale, and macroscale composites for high field magnet applications. 

INTRODUCTION 

There are many engineering applications in which composite materials are required 
to satisfy two or more criteria regarding physical and mechanical properties. An 
example is the development of two-phase wires or tapes for the fabrication of coils 
for high field magnets (Wood et al., 1995). Simple diagrammatic representations can 
be developed which display the combinations of properties for a variety of materials 
in relation to design requirements. An example of such a diagram is shown in Fig. 1. 

For a simple solenoid, these diagrams are based on the development of functions 
to describe the response of the material in terms of the strength required to resist the 
Lorentz force and the conductivity required to minimize the ohmic heating in a given 
pulse of time At. Thus on this diagram we can indicate minimum acceptance criteria 
either in terms of the strength of the magnet in Teslas as horizontal lines or diagonal 
lines indicating maximum pulse durations. In general, materials for this application 
will be metallic composites or dispersion strengthened materials. 

Further insight into the selection of materials can be gained by considering whether 
the properties of the composite are described by a suitable rule of mixtures or whether 
the scale and distribution of the phases in the composite must be considered. 
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Fig. 1. Materials selection chart for the windings of high-field, pulsed magnets. 

In this overview, consideration will be given first to drawn, filamentary composites 
in which attention must be given to the scale of the microstructure in relation to 
both the strength and the electrical conductivity. The results obtained on drawn, 
filamentary composites raise important fundamental questions regarding both the 
role of interphase interfaces in electron scattering and the magnitude and influence of 
internal stresses produced by co-deformation. 

These concerns, particularly those related to electrical conductivity, can be 
addressed by reference to model systems of multilayers of copper and niobium pre- 
pared by vapour deposition. This portion of the study is based on the work of Dr A. 
J. Griffin Jr. and Dr M. Nastasi of the Los Alamos National Laboratory. 

The final section of the overview will compare methods of using the appropriate 
laws of mixtures to develop fabrication methods for producing materials with suitable 
combinations of strength and electrical conductivity. 

DRAWN FILAMENTARY COMPOSITES 

Many two-phase materials containing plates or rods of the second phase can be 
deformed by wire drawing or rolling to yield fine-scale structures as shown in Fig. 2. 
The co-deformation of phases to produce fine-scale structures raises three fun- 
damental issues: (a) the morphological stability of the embedded phase during large 
strain deformation (macroscopic aspects of this problem have been examined in detail 
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■mm 
Fig. 2. A TEM micrograph of a longitudinal section of copper-niobium wire after drawing. 
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Fig. 3. Relationship between normalized strength and interphase spacing for drawn copper-niobium wires 
(SpitzifandKrotz, 1988). 

by Steif, 1972); (b) the range of validity of strengthening relationships such as the 
Hall-Petch formulation for ultra-fine-scale structures (Christman, 1993); and (c) the 
mechanism of energy storage at large strains in two-phase systems. 

In drawn, two-phase structures, the morphology of the phases can be very complex 
for the case where one phase is f.c.c. and one is b.c.c. due to the fibrous nature of the 
b.c.c. textures (Hosford, 1964). Thus prior to discussing the details of the validity of 
strengthening mechanisms and the energy storage processes, let us consider a simple 
description of the increase in strength due to imposed plastic strain in a system such 
as Cu-Nb. 

If we assume that the strengthening is of the Hall-Petch type where the strength 
scales as X~l/2 where X is the spacing of the second phase fibres, the data can be 
analyzed as shown in Fig. 3 (from Spitzig and Krotz, 1988). It can be seen that at 
fibre spacings of the order of 30 nm the strength level approaches 2 GPa. This is of 
the order of E/&0 where E is the elastic modulus of copper. 

A very simple model of electrical resistivity can be developed by assuming that at 
large strains the dominant contribution to electrical resistivity is scattering at the Cu- 
Nb interfaces as the spacing of fibres becomes of the order of the mean free path of 
the electrons. 

Following the work of Dingle (1950) and Sondheimer (1952), the following relation- 
ships were proposed to predict the resistivity 

Pt 

Pb 

Pb 

3x 
l + rfl+P) 

P\* —p\x 
l+pJX 

X » x 

X« x 

(1) 
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Fig. 4. Relationship between electrical resistivity and interphase spacing for fine-scale, two-phase micro- 
structures. 

where pf is the resistivity of the fibrous material, pb is the resistivity of the bulk 
material, x is the mean free path of the electrons, X is the interphase spacing and/? is 
the probability of the electrons being scattered elastically. Typical values of/> have 
been found experimentally to be in the range 0.10-0.15 (Frommeyer and Wassermann, 
1975). The result of applying these equations is the prediction that, at large interphase 
spacings, the resistivity is that of the bulk material, whereas at spacings which are 
comparable to the mean free path, the scattering at interfaces will dominate and the 
resistivity will be higher than that of the bulk. 

Using this type of model, the dependence of electrical conductivity on the scale of 
the drawn microstructure can be predicted as in Fig. 4. The physics of interface 
scattering has been discussed in detail by Skomski et al. (1992). The resistivity of well 
controlled, Cu-Nb layered structures is discussed in relation to the model proposed 
by Skomski et al. in a later section of this paper. 

The simple laws for the dependence of strength and resistivity on the scale of the 
structure enables a basic initial framework to be developed to consider how these 
characteristics enter into the design of wire for magnets. Thus we can view the question 
of high-strength, high-conductivity composites from two viewpoints: (a) the concept 
of the design of structures based on the simplified models outlined above, and (b) de- 
tailed consideration of the strengthening and resistivity mechanisms in fine-scale 
structures. 

FINE-SCALE COMPOSITES 

If the strength of the composite increases as k~m and the resistivity varies as A"1, 
then the combination of properties can be plotted on the design diagram as shown in 
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Fig. 5. Pulsed magnet materials selection chart showing the evolution of properties of in-situ composites 
with strain for various initial interphase spacings. 

Fig. 5. The trajectory of increasing strength and decreasing conductivity will be 
determined by the initial scale of the structure, X0, and the magnitude of the imposed 
strain in the drawing process. The essential points of such a treatment are that 
structures with finer initial scale are advantageous because they can be processed with 
smaller imposed strains. However, the methodology has the drawback that both 
properties are linked to the same microstructural scaling parameter, namely the 
interphase interfacial spacing X. 

MACROSCOPIC COMPOSITES 

The properties of strength and resistivity can be effectively decoupled by considering 
a macroscopic composite in which the scale of the conducting phase (in this case 
copper) remains in excess of the mean free path of the conducting electrons while the 
second phase is chosen such that it is able to work harden rapidly. 

Typical cross sections for such macroscopic structures are shown in Fig. 6. Using 
this concept, we can use the fact that the copper stores dislocations as it work hardens 
but these contribute a resistivity of only 10~25 Qm3 per unit length (Basinski and 
Saimoto, 1967) and hence the conductivity of heavily deformed copper is only reduced 
from the annealed copper standard by 1-2% in the absence of any other scattering 
mechanisms. The incorporated second phase can now co-deform with the copper but 
strain harden at a much higher rate than copper. Typical examples would be pearlitic 
steel or some stainless steels which undergo a martensitic transformation upon defor- 
mation. The appropriate law of scaling is then: 
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Copper core 

Fig. 6. Schematic representations of macroscopic composite structures. 

ffcomp = <?Cu VCu + ÖEp(e)(l - ^Cu), (2) 

where VCu is the volume fraction of the copper matrix and <rEP(s) is the strength of 
the embedded phase after an imposed codeformation of £. The resultant increase in 
strength predicted for copper containing 20% of various phases capable of work 
hardening to high imposed strains is shown in Fig. 7. It can be seen that this method 
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of decoupling the dependence of strength and electrical conductivity on the scale of 
the structure can be expressed as a new development trajectory on the design diagram 
as shown in Fig. 8. 

FUNDAMENTAL ISSUES RELATING TO HEAVILY DEFORMED IN 
SITU COMPOSITES 

Let us consider first the problem of microstructural scale and conductivity. The 
recent work of Skomski et al. (1992) considers the interface scattering in terms of the 
degree of substitutional disorder Pm and the interface thickness b as well as the scale 
of the microstructure X. Thus 

PW =-2(PA + PB)- 
AbP„ 

X 
'tanh (3) 

where pA and pB are the bulk resistivities of phases A and B. 
The data obtained for vapour deposited layers of copper and niobium by Griffin et 

al. (1995) can be plotted in this form as shown in Fig. 9. Despite the difficulty of 
obtaining regular layered structures less than 10 nm in wavelength, the data show 
good agreement with the Skomski model providing an interface thickness of about 
3-^1 nm is assumed. A second interesting feature of this data is the observation that 
as the thickness of the vapour deposited niobium decreases the observed critical 
temperature for the superconducting transition in niobium is reduced as shown in 
Fig. 10. The most likely explanation of this observation is that, in the fine-scale 
structure, superconductive pairing of the electrons is disturbed by the proximity 
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effect, resulting in a reduction of the critical temperature. However at very fine layer 
thicknesses the structures may be influenced by coherency stresses also, which may 
influence the conductivity. 

Turning to the strengthening mechanisms in fine-scale structures, it is of importance 
to note that several studies (e.g. Wood and Embury, 1995) have shown direct evidence 
of large elastic stress in the niobium filaments after co-deformation. These elastic 
stresses need to be accounted for in the overall description of the detailed strengthening 
mechanism and it must be recognized that they cause the elastic-plastic transition to 
be rounded, making it difficult to define the yield stress and critical hardening rate. 
In addition to the elastic stress, the fine scale of the structure reduces the source length 
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thickness. 



Influence of microstructural scale in composites 747 

Fig.  11. A high resolution TEM image of the copper-niobium interface showing regularly spaced 
dislocations. 
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of the dislocations which may also contribute to the overall strength level. Also, it is 
important to note that the niobium phase is reduced in scale but that its cross-section 
remains essentially uniform. Thus, the scale of deformation during co-deformation at 
large plastic strains must be extremely fine and it is of value to ask how energy is 
stored in these structures. As few dislocations are observed in either the copper or 
niobium, it is probable that storage at the interphase interfaces becomes an important 
process. This concept has been examined previously in models suggested by Gil 
Sevillano et al. (1981) and Embury (1992). Direct evidence of the process can be seen 
in the high resolution electron micrograph shown in Fig. 11 where dislocations can 
be observed at spacings of the order of 7-10 atomic planes. Thus, as the scale of the 
structure is refined, the embedded phase eventually takes the form of whiskers which 
are developed by large strain co-deformation of the phases. In addition, large areas 
of interphase interfaces are created which are subject to tractions due to the com- 
patibility of the phases and dislocation storage at the interface. 

These observations strongly suggest that in fine-scale structures, new mechanisms 
of energy storage such as interfaces which are under traction due to the capture of 
dislocations must be examined in detail both by electron microscopy and by methods 
such as calorimetry and morphological and dimensional stability studies. 

CONCLUSIONS 

This paper emphasizes three essential aspects of fine scale composites: 

(a) that the scale of these structures can be incorporated in simple scaling laws that 
have direct relevance to component design in areas such as high field magnets; 

(b) that comparison of drawn in situ composites and macroscopic composites 
provide a useful way to decouple properties such as strength and conductivity 
which are normally linked to the same microstructural scale; 

(c) at interface spacings below 50 nm, phenomena at the interphase interfaces 
influence a range of processes such as electron scattering, superconductivity, 
strengthening and energy storage and that systematic studies of these processes 
in relation to the specific combinations of materials represents a fruitful area 
for much future research. 
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RELIABILITY OF CERAMIC MULTILAYER ACTUATORS: 
A NONLINEAR FINITE ELEMENT SIMULATION 
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ABSTRACT 

In a ceramic multilayer actuator, the abrupt end of an internal electrode concentrates the electric field, 
inducing stresses in the ceramic. Crack nucleation and growth have been observed, experimentally, but 
have not been well modeled due to the complex material behaviors. We write a finite element program to 
solve this coupled electromechanical problem. The material is taken to be nonlinearly dielectric with 
electrostrictive strain quadratic in electric displacement. The program solves field distributions in a mul- 
tilayer actuator, which are combined with fracture mechanics to obtain cracking condition. The calculations 
are compared with the existing analytical solution under the small-scale saturation conditions, and then 
extended to the large-scale saturation conditions. We show that the cracking condition established under 
the small-scale saturation conditions gives useful estimate even when the saturation zone is comparable to 
the actuator layer thickness. 

1.    INTRODUCTION 

Ceramic multilayer actuators have found a wide range of applications owing to their 
small volumes, quick response, low energy consumption, and large generative forces 
(Uchino, 1993 ; Rogers, 1995). Various electrode configurations have been proposed 
(Yoshikawa and Shrout, 1993), one of which is shown in Fig. 1. An actuator often 

External Electrode - r 1 

Internal electrode 

—o o  
+v    0 

Fig. 1. A schematic picture of ceramic multilayer actuator. 

751 



752 X. GONG and Z. SUO 

consists of hundreds of ceramic layers, alternating with thin metal films (internal 
electrodes). Each metal film connects one edge to one of the external electrode strips, 
and terminates another edge inside the ceramic to maintain insulation. The terminated 
electrode edges raise a serious reliability problem. Cracks start in the ceramic around 
the electrode edges, grow and damage the device (Furuta and Uchino, 1993; Abu- 
ratani et ah, 1994; Schneider et ah, 1994). 

Figure 2 illustrates a basic cracking mechanism (Suo, 1993). When a voltage Fis 
applied to the multilayer actuator, an electric field Eappi = V/H prevails in the region 
covered by two internal electrodes, where H is the individual ceramic layer thickness 
[Fig. 2(a)]. However, the electric field around a terminated electrode edge is non- 
uniform and much higher than E„pp] [Fig. 2(b)]. Consequently, the ceramic around 
the electrode edge undergoes an incompatible deformation due to either ferroelectric 
switching or electrostriction [Fig. 2(c)]. The incompatible deformation, in its turn, 
induces a stress field that may activate flaws in the ceramic to grow. 

a) 

HUH 
!  i 

b) 

c) 

Fig. 2. A basic mechanism for cracking around an electrode edge. 
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Winzer et al. (1989) was the first to analyze the problem using finite element method. 
They determined the electric field in an actuator assuming that the ceramic is linearly 
dielectric, and then solved a linear elastic problem to determine the stress field induced 
by quadratic electrostriction. Yang and Suo (1994) studied the similar problems 
analytically, and showed that at a small distance r from an internal electrode edge, 
the stress field is 1/r singular. The strong singularity results from two idealizations: 
the electrode was taken to be a mathematical plane with no thickness, and the ceramic 
was linearly dielectric. In reality, as the electric field increases, the electric displacement 
saturates, resulting in a lower electrostrictive strain than that predicted from a linear 
dielectric. Yang and Suo (1994) proposed a step-like electrostriction model, and 
showed that the stress is no longer singular. For an electrostrictive ceramic with 
saturated electric displacement, Horn and Shankar (1995) and Hao et al. (1996) 
showed that the stress field around the electrode edge is only logarithmic singular. 

The analytical solutions are only valid under the small-scale saturation conditions, 
and are obtained under the condition that the stress field does not affect the electric 
field. To analyze the problem, with realistic device geometries and nonlinear electro- 
mechanical coupling, one has to write a finite element program (Gong, 1994, 1995). 
Independent of our work, Horn and Shankar (1995) have formulated a finite element 
approach to the same problem. Their formulation differs from ours, but the two 
formulations give similar numerical results. The present paper builds upon the pre- 
vious work and reports details of a finite element simulation. The conclusion is 
expected to be useful in actuator design. Section 2 formulates the coupled electro- 
mechanical field in a ceramic multilayer actuator as a boundary value problem. This 
problem is then solved by a finite element method outlined in Appendix A. Section 3 
reviews the small-scale saturation model, and compares the solution with the finite 
element results. Section 4 extends the finite element analysis to the actuators under 
large-scale saturation conditions. 

2.    PROBLEM FORMULATION 

We focus our attention on plane strain problems, which allow us to compare finite 
element results with existing analytical solutions. This section lists governing equations 
and boundary conditions for an actuator. Details of the finite element formulation 
specific to nonlinear electrostrictive ceramics are given in Appendix A. Once the stress 
field is solved, we apply fracture mechanics to obtain the stress intensity factor. 

2.1. Governing equations 

Subject a solid dielectric to a distribution of displacements u, v in the x, y directions, 
and electric potential <j>. The strain tensor, y, and the electric field vector E, are the 
gradients 

yij = \(ui,j+uj.i)>  Ei=-(/>,!■ (2-1) 

Across an interface, the stress tensor, a, and the electric displacement vector, D, jump 
by 
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niloy-oTj] = tj,    n[Dt -£»,"] = -o>, (2-2) 

where n is the unit vector normal to the interface pointing from the — side to the + 
side, t is the traction, and a> is the charge per unit area, externally applied on the 
interface. If the material is free of space charge and body force, the stress tensor and 
the electric displacement vector are divergence-free, namely, 

a(JJ = 0,    A,, = 0. (2.3) 

Suo (1991), and Horn and Shankar (1994) proposed a set of constitutive equations 
for nonlinear, isotropic electrostrictive ceramics on the basis of experimental obser- 
vations and thermodynamic considerations. Under the plane strain conditions, the 
constitutive equations take the form 

y** = [(l-v2)axx-v(l+v)ayy]/Y+Q[(l-vq)D2-q(l+v)D2
y] (2.4a) 

lyy = [(l-v2)ayy-v(l+v)axx]/Y+Q[(l-vq)D2
y-q(l+v)D2] (2.4b) 

yxy=(\+v)axy/Y+Q(l+q)DxDy (2.4c) 

Ex= -2Q[(l-vq)Dx<Jxx + (l+q)Dyaxy 

-q(l+ v)Dxayy - q2Dx YQ(D2
X + D2)} +f(D)DJD (2.4d) 

Ey= -2ß[(l - vq)Dyayy + (1 + q)Dxaxy -q(l+ v)Dyaxx 

- q2Dy YQipl + Dj)] +f(D)Dy/D. (2.4e) 

Here D = (Dß,)112 is the magnitude of the electric displacement, v is Poisson's ratio, 
Y is Young's modulus, Q and q are the electrostrictive coefficients. The strains are 
linear in the stresses (elasticity) and quadratic in the electric displacements (elec- 
trostriction). The electric field is nonlinear in electric displacements (dielectric effects), 
and also depends on stresses (converse electrostrictive effects). The function, E =f(D), 
is the dielectric response in the absence of stress. Experiments have shown that when 
the electric field increases, its ability to induce further electric displacement decreases, 
which finally saturates at a constant value Ds (Uchino and Nomura, 1983; Jang et 
al, 1989; Cao and Evans, 1993; Lynch et al, 1994; Lynch, 1995). 

Figure 3 shows two D-E relations in the absence of stress. The relation used by 
Gong (1994), Horn and Shankar (1994) and Gong (1995) in the finite element analysis 
is written as 

2      \1-D/DS 

Here Ds is the saturated electric displacement, Es is a characteristic electric field. 
When E is small, D is linearly proportional to E, and the slope defines the dielectric 
permittivity s. One can confirm that 

Es = DJs. (2.6) 

The solid line in Fig. 3 is the D-E relation used by Hao et al. (1996). When E < Es, 
the ceramic is linear. When E > E,, D is maintained at the constant saturation value 
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£»s. The relationship (2.6) among the three parameters Ds, Es and s is the same for the 
two dielectric laws. 

Notice that when the electric displacement saturates, the electrostrictive strain also 
saturates. This introduces another important parameter in actuator design 

ys = QDl, (2.7) 

which is the saturation strain along the electric field direction in the absence of stress. 
The saturation strain transverse to the electric field is — qQDl- 

2.2. Boundary conditions 

Figure 4 shows the boundary conditions appropriate for a multilayer actuator. 
Place the origin of the Cartesian coordinate x-y at a terminated electrode edge. 
Because of the symmetry, only half of an individual layer needs to be analyzed. Along 
the upper electrode, the vertical displacement is constant 

v(x,H) = constant. (2.8a) 

The value of the constant is to be determined as a part of the solution. The electric 
field potential equals the applied electric voltage, 

<«*,//) = Fappl. (2.8b) 

When no external stress is applied on the actuator, the shear stress and the vertical 
resultant force vanish, namely 

= 0, 
'i. 

ayy(x, H) dx = 0. 

The lower electrode is connected to the ground, so that 

(Hx,0) = 0,    -Z,2«Sx<0. 

(2.8c) 

(2.8d) 
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The vertical displacement and the shear stress vanish on both the electrode and its 
front plane due to the symmetry 

v(x,0) = 0,    axy = 0,    -L2^x^Li. (2.8e) 

In front of the lower electrode plane, due to symmetry, the vertical electric dis- 
placement vanishes 

Z>(x,0) = 0,    0<x<L, (2.8f) 

At the end of the actuator and its vertical symmetric plane, tractions and horizontal 
electric displacement vanish 

ffjcx = 0,    axy = 0,    Dx = 0. (2.8g) 

To avoid rigid body motion, we constrain the horizontal motion at the left lower 
corner 

u(-L2,0) = 0. (2.8h) 

2.3. Stress far away from the electrode edge 

We will use finite element program to analyze a special case that both Lx and L2 

are much larger than H. Although this configuration is different from a typical 
actuator, it emphasizes the conditions around the electrode edge with minimum 
complications from the external boundaries. The more realistic complication Lx « L2, 
L, x H will be studied elsewhere. 
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When L, » H and L2 » H, one can readily determine the stresses in the actuator 
far away from the electrode, where the electric field is uniform, vanishing in the 
inactive part and equal to the applied electric field in the active part. The only nonzero 
stress component is ayy, which is tensile ahead of the electrode edge, and compressive 
behind, due to the global mismatch between the active part and the inactive part. 
Denote the stress far ahead of the electrode edge by a+ and the stress far behind the 
electrode edge by a~. The resultant force vanishes 

Lxa
++L2a- = 0. (2.9a) 

The vertical displacement is the same in both parts 

1-v2 1-v2 

-^o-+{\-vq)QD2=~-^o+. (2.9b) 

These two equations solve the two stresses, giving 

L2      l—vq 
o+ =T-~r—~YQD\ (2.10a) 

L\ +L2 1 —v 

L,+L2 1- 
YQD2. (2.10b) 

For example, taking L2 = Lx, Y= 10" N/m2, QD2 = 10"\ v = q = 0.3, one finds that 
the tensile stress a+ = 50 MPa. We emphasize that the stresses <r+ and a~ are valid 
far away from the electrode edge. The stress field in general must be determined by 
using the finite element analysis. 

2.4. Computing the stress intensity factor 

Once the stress field is obtained from the finite element calculation, the stress 
intensity factor can be evaluated by means of the fracture mechanics. Consider a 
crack-like flaw of length a, taken to be much smaller than the layer thickness, i.e. 
a/H « 1. The stress normal to the crack surface, an, induces a stress intensity factor 
(Tada et ah, 1985) 

ff.W  /—dx. (2.11) 
ya—x 

We evaluate this integral numerically. 
Introduce a dimensionless parameter 

QDsYys     Yyl 

sE2 « = ^1^ = 7^> (2-12) 

which is a material constant that measures the relative magnitude of mechanical and 
electrical energy. Its mathematical significance can be appreciated as follows. For a 
ceramic under uniaxial stress a and electric displacement D, the longitudinal strain y 
and electric field E are 
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Normalize the strain by ys, the stress by Yys, the electric displacement by Ds, and the 
electric field by Es, so that (2.13) takes a dimensionless form 

y = a + D2,    E= -2aDo +-\J-^-A. (2.14) 

Similar relation for the multiaxial loading state can also be deduced from (2.4). 
Consequently, when a = 0, the stresses do not affect electric fields. The approximation 
a = 0 has been made in most previous publications, which we will verify in this paper. 

The stress intensity factor takes the dimensionless form 

_* JaE^_ \ (115) 

Function k is to be determined from the finite element calculation. 

3.    SMALL-SCALE SATURATION 

This section summarizes the model for an actuator under the small-scale saturation 
conditions (Suo, 1993; Yang and Suo, 1994; Hao et al, 1996), and compares it with 
our finite element results. 

3.1. The small-scale saturation model 

When the applied electric field is small compared to the characteristic electric field, 
E , < E the electric field in the bulk of the actuator is linearly dielectric. The electric 
field a distance r ahead of the electrode edge is square-root singular 

£ = -*L. (3.1) 
y/2nr 

The electric field intensity factor KE depends on the driving voltage and the device 
geometry, and can be solved from linear dielectric boundary value problems. Linearity 
and dimensional considerations dictate that the intensity factor should take the form 

tfE = Q£applN/tf. (3-2) 

The dimensionless coefficient Q = ^2 for the present actuator geometry. 
Under the small-scale saturation conditions, the electric displacement saturates 

only within a small cylinder around the electrode edge. The radius of the saturated 
cylinder is 

s(£>- ,3J) 
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The linear dielectric solution (3.1) is approximately valid in an annulus with its inner 
radius larger than the saturated cylinder and outer radius smaller than the individual 
ceramic layer thickness, i.e. rs < r < H. 

Around the electrode edge, the electric field generates an incompatible strain field, 
which, in its turn, induces a stress field. The high stress field is localized in a region 
scaled by the saturated cylinder. For a rapidly decaying stress field, the stress intensity 
factor, Ki, is small for both small and large flaws. Consequently A^ peaks for a flaw 
of some intermediate size scaled with rs. The peak value takes the form 

(*i)m» = A^*5, (3.4) 

where the dimensionless number A depends on the detail of the material model. 
Substituting (3.2) into (3.4), one obtains that 

(Kl)Bm=A£lYy'E"*l^]*. (3.5) 
A 

Consequently, under the small-scale saturation conditions, function k in (2.15) is 
linear in the loading parameter, Eappi/Es. 

No flaws, of any size and location, can grow if (ATi)max < Klc, i.e. 

AQYjsElP^H<Klc, (3.6) 

where Klc is the toughness of the electrostrictive ceramic material. Consequently, 
everything else being equal, there exists a critical layer thickness, given by 

H-(s£U- (37) 

below which no flaw will grow. 
The merit of the small-scale saturation approximation can be appreciated as follows. 

An actuator is made of a complex material with a complex geometry. Under the 
small-scale saturation conditions, the two complexities, material behavior and 
geometry effect, can be treated independently. The dimensionless details of a material 
law only affect the coefficient A defined by (3.4), which can be obtained either 
empirically or by analyzing a material model. The geometry details of the actuator 
only affect the coefficient Q defined by (3.2), which can be obtained by analyzing a 
linear dielectric boundary value problem. The scheme will be particularly useful in 
evaluating several materials for a common actuator geometry, or several actuator 
geometries for a common material. 

3.2. Comparison of the finite element calculation with the HGS solution 

We compare the HGS (Hao et al., 1996) solution with the finite element results in 
this section. In all numerical calculations, we set v = 0.26, q = 0.38, and 
Lx = L2 = 40H. We use a small loading level EliVvljEs = 0.08 to represent the small- 
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scale saturation conditions. Figure 5 compares the electric field distribution along the 
x-axis. The solid line is the HGS solution; the electric field vector lies in the x-direction 
ahead of the electrode edge, and in the j-direction behind the electrode edge. The 
finite element results for a = 0 and a = 0.02 are indicated. As mentioned before, a 
defined in (2.12) affects the ability of the stress field to influence the electric field. In 
most existing analytical solutions, this parameter has been set to zero to simplify the 
analysis. Figure 5 shows that a realistic value a = 0.02, does not change the electric 
field substantially, and both sets of results agree with the HGS solution. 

Figure 6 compares the electric displacement distribution. Again, the two cases a = 0 
and a = 0.02 give similar results. The difference between the finite element solutions 
and the HGS solution is caused by different D-E relations used in the calculations 
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(shown in Fig. 3). This is confirmed by comparing the finite element results with the 
existing analytical solutions in Appendix B. 

Stress distributions along the x-axis are plotted in Figs 7 and 8. The small differences 
between the HGS solution and the finite element calculation suggest that the stress 
singularity does not change when using a slightly different D-E relations in Fig. 3. It 
also suggests that a similar stress intensity factor should be obtained. Consequently, 
details in the shape of the DE relation plays little role as far as cracking condition is 
concerned. 

Since the stress contributes negligibly to the electric field. Our finite element cal- 
culation under the large-scale saturation conditions will focus on the case a = 0. 

-0.5 

Normalized x-axis, x/rs 
Fig. 8. The normal stress axx in the electrode plane and in the plane directly ahead of the electrode edge. 
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4.    LARGE-SCALE SATURATION 

When the applied electric loading approaches the saturation electric field, the 
saturation zone size becomes comparable to the layer thickness. The electric field in 
the ceramic is no longer r~lß distributed around the electrode edge. Consequently, 
the electric field intensity factor, KE, is no longer meaningful, nor is the saturation 
cylinder radius, rs. Nevertheless, we can normalize lengths in the similar manner as in 
the small-scale saturation case by a characteristic length, still written as rs, but defined 

by 

TlEl 
(4.1) 

This definition is motivated by combining (3.2) and (3.3), although neither holds the 
original physical meaning. Figures 9 and 10 plot the stresses along x-axis at different 
applied electric fields. The solid lines are the stress distributions under the small-scale 
conditions. It may be instructive to think of the stress field as a combination of the 
local logarithmic singular stress field and the global uniform stress field. Near the 
electrode edge, the stress distributions are similar to those under the small-scale 
saturation conditions. Far away from the electrode edge, the stress is uniform, com- 
pressive behind the edge and tensile ahead of the edge (2.10). 

Once the stress field is determined, the stress intensity factor KY is evaluated for a 
small flaw from (2.11). The value of Kt depends on the position, orientation and size 
of the flaw introduced in the calculation. Such information on flaws is in general 
unavailable, or at the best, imprecise. We assume that the length of the crack-like 
flaw, a, is on the order of grain diameter, much smaller than the layer thickness, H. 
To be definite, we place the flaw along the x-axis, with one tip of the flaw at the point 
behind the electrode edge, where the normal stress changes from compression to 



Reliability of ceramic multilayer activators 763 

£ 

b» 

T3 
N 

O 

a Eapp/Ej—0.2 

° Eapp|/Es=0.5 
1.0 ' Esppi/Es=0.8 

" E.ppi/^i.0 

- HGS Solution 
r I 

0.5 

0.0 
^ h 

» 

i i 

Normalized x-axis, x/rs 

Fig. 10. The normal stress axx in the electrode plane and in the plane directly ahead of the electrode edge 
for different applied electric fields. 

tension. Figure 11 shows the calculated stress intensity factor at different applied 
electric fields. They all peak when the other flaw tip is at the electrode edge, and 
reaches similar value. The peak value of Kj is written as 

(*0n 0.25YysJ2H 
E appl (4.2) 

It is noted from Fig. 11 that the prefactor varies with the load level Eäpp]/Es, but only 
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Fig. 11. The stress intensity factor for flaws under different loads. 
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by a small amount. A larger value is chosen to write (4.2) for conservative design. No 
flaw will grow if (iQmax < Klc. Equation (4.2) defines a critical layer thickness 

Hc = 
■ft-IcA 

Yy,E, appl 

(4.3) 

No flaw will grow if every individual layer of the actuator is thinner than Hc. The 
form of the above expression is identical to the small-scale saturation approximation 
(3.7). The prefactor in (4.3), however, depends on the load level E^pl/Es. The value 
used in (4.3) belongs to E&PJE, = 0.2, which serves as a conservative approximation, 
judging from Fig. 11. 

The above cracking condition is derived under the assumption that small flaws are 
available in a size range, and the flaw that maximizes KY is critical. Consequently, the 
cracking condition so derived does not depend on the flaw size. If, however, the flaw 
size a is known from processing, a different cracking condition can be formulated. 
Figure 12 shows crack driving force for three flaw sizes as a function of applied 
electric loads. For large flaws, K{ keeps increasing as the applied loading increases. 
For small flaws, KY peaks at a certain applied load. The peak values are basically the 
same as one obtained from Fig. 11. Based on this behavior, we construct a maximum 
crack driving force versus normalized flaw sized curve in Fig. 13. Below this curve, 
flaws cannot grow at any electrical loads. 

5.    CONCLUDING REMARKS 

The finite element calculation indicates that the crack nucleation condition deduced 
from the small-scale saturation is still approximately valid when the applied electric 
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field approaches the saturation field. More accurate cracking conditions under the 
large-scale saturation conditions can also be obtained in similar forms, but with 
different numerical coefficients. Stress induced by electrostriction consists of two 
parts: a uniform stress induced by the overall strain mismatch far behind and far 
ahead of the electrode edge, and a nonuniform stress induced by the electric field 
concentration near the electrode end. For the particular geometry we have analyzed 
in the paper, the second part plays the dominant role in crack nucleation. For a 
typical actuator, where the gap between the internal electrode edge and the actuator 
end (Lt in Fig. 4) is comparable to the layer thickness H, a further study on actuator 
geometry dependence of the cracking criterion is necessary. 
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APPENDIX A: FINITE ELEMENT METHOD FOR NONLINEAR 
ELECTROSTRICTIVE CERAMICS 

We use eight-node quadratic isoparametric elements (Zienkiewicz, 1977). Divide the physical 
plane x-y into many (possibly curved) quadrilaterals, and map every element to a square with 
side length 2 in the calculation plane t,--n according to 

x = £ xMZ, n),  y=l yMZ, n), (A-J) 
i= i i-1 

where (x„ y) are the nodal position vectors, and JV,-(£> l) are the interpolation functions. Denote 
the nodal values of the displacements and electric potential by u„ vh #,-. Approximate the field 
u(x,y), v(x,y), and (j)(x,y) within an element in the same way as the position vectors, namely 
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U(x,y) = £ uMLi),  v(*,y) = I »Mt,ri),  $(x>y) = I <I>MZ,1)-      (A.2) 
1= 1 I-1 '= 1 

Write all the nodal values of u, v, and <j> on the mesh by a column, a, and assemble the above 
interpolation in matrix form 

~u(x,y)~ 

v(x,y)   = Na, (A.3) 

-4>(x,y). 

where N contains the interpolation functions for all the nodes of the entire mesh. 
The basic field equations in Section 2 can be written as a weak statement 

JK- Sy,-j - D, SE,) dv = j(r; öu, -coä<p) ds. (A.4) 

Here <5() indicates small variations. Denote 

(A.5) 

Here t° is the traction prescribed on part of the boundary S„ and w° is the charge per unit area 
prescribed on part of the boundary Sm. Taking gradients of the displacements and the electric 
potential according to (A.3) and (2.1), one obtains that 

ST = Böa, (A. 6) 

where B is the matrix resulting from the differentiation. In the discretized form (A.4) becomes 

<rx yx 

ay y>- t° 

txy 
,  r = 2yxy ,   T = ly 

Dx -Ex — CO 

lDy\ i-Ey\ 

öaT    BT£dt; = <5aT NTTd5. (A.7) 

The superscript T stands for the transpose of a matrix. Since (A.7) holds true for arbitrarily 
chosen da, one concludes that 

BTLdy = NTTdS. (A.: 

Notice S is a function of T, and therefore a function of a. Equation (A.8) is a set of nonlinear 
equations for a nodal variables a. They are solved incrementally by linear equations 

KAa = A/lR. (A.9) 

Here Aa is the increment, AX is a parameter that controls the loading increment, K is the 
tangential stiffness matrix 

K BTC    Bdy, 

and R is the equivalent load 

NTTdS. 

(A.10) 

(A. 11) 
s, + s„ 

The matrix C contains the differential coefficients of the constitutive equations, namely 
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dr = CdL. 

The matrix C is symmetric, but in general not positive-definite. 

(A. 12) 

APPENDIX B: ELECTRIC FIELD NEAR ELECTRODE EDGE 

When the effect of stress on the electric field is negligible, the governing equations for the 
electric field around an electrode edge take the same form as the governing equations for the 
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Fig. Bl. Comparison of the electric field distribution along the x-axis between finite element solution and 
the analytic solution. 
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Fig. B2. Comparison of the electric displacement distribution along the x-axis between finite element 
solution and the analytic solution. 
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stress field around a mode III crack tip. We now interpret Rice's (1967) solution of a mode III 
crack in a nonlinearly elastic solid for an electrode in a nonlinearly dielectric solid. Let D, E be 
the magnitude of electric displacement and electric field, cp be the angle between the direction 
of the electric field and the x-direction, measured positive counterclockwise. Write 

y  '     2nEl 

*°°    du 1 

E u2D{u) ~ ED{E) 
(B.l) 

R(E) = -^ , (B.2) 
2%ElED(E) 

where KE is the electric field intensity factor of an asymptotic approach to the linear D-E 
interaction. For a given electric field magnitude E, the position coordinates are 

x = -X{E)-R(E) cos2<p,   y = R(E)sin2<p. (B.3) 

This solution for the dielectric law (2.5) is plotted and compared with the finite element solution 
for small scale saturation in Fig. Al and Fig. A2. 
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ABSTRACT 

The debonding problem for a composite layer that consists of a homogeneous substrate and a non- 
homogeneous coating is considered. It is assumed that the problem is one of plane strain or generalized 
plane stress and the elastic medium contains a crack along the interface. It is further assumed that the 
thermomechanical properties of the medium are continuous functions of the thickness coordinate with 
discontinuous derivatives and the kink line of the property distributions corresponds to the "interface". 
The mixed-mode crack problem is formulated for arbitrary crack surface tractions and sample results are 
given for uniform normal and shear tractions. The main variables in the problem are two dimensionless 
length parameters and a nonhmogeneity constant. Calculated results consist of primarily the stress intensity 
factors and the strain energy release rate and are partly intended to provide benchmark solutions for 
further numerical studies. 

1.    INTRODUCTION 

In many high temperature applications such as advanced turbine systems and earth- 
to-orbit winged planes, to achieve higher efficiencies and higher velocities the use of 
structural ceramics is becoming almost a necessity for the protection of hot section 
components. For example, in large natural gas-fired stationary turbines currently in 
service, with 1260°C rotor inlet temperature the lower heating value plant efficiency 
is approximately 54%. With some innovations in design and changes in materials and 
cooling systems, a goal of increasing the plant efficiency to 60% does not seem to be 
unrealistic. This, in turn, requires raising the inlet temperature to well over 1400°C 
and the development and use of new materials and coatings. The homogeneous 
ceramic coatings used for this purpose seem to have some reliability and durability 
problems that need to be addressed. The problems arise from relatively high residual 
and thermal stresses caused by the mismatch in thermal expansion coefficients, gen- 
erally poor bonding of ceramic layers to metal substrates, very low resistance of 
most refractory ceramics used as coatings to oxygen diffusion, and low toughness of 
ceramics. Homogeneous coatings, therefore, tend to be highly susceptible to cracking 
and spallation. 

An alternative concept that may be used to overcome some of the shortcomings of 
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the homogeneous ceramic coatings would be the introduction of an interfacial zone 
with graded thermomechanical properties between the coating and the substrate or 
the replacement of the coating by a composite layer with a volume fraction varying 
between 0% ceramic and 100% metal on the interface and 100% ceramic and 0% 
metal near and at the surface. Such particulate composites with continuously varying 
volume fractions are called functionally graded materials (FGM) [for review and 
extensive references see Yamanouchi et al. (1990) and Holt et al. (1993)]. The use of 
functionally graded layers seems to reduce the magnitude of the residual and thermal 
stresses (Lee and Erdogan, 1994), significantly increase the coating/substrate bonding 
strength (Kurihara et al, 1990) and, by increasing the fracture toughness in thickness 
direction, provide the composite medium with a natural R-curve behaviour (Saito 
and Takahashi, 1990). By controlling not only the composition profile but also the 
microstructure, the concept of functionally graded materials provides a great deal of 
flexibility in material design. As the processing techniques improve, the potential for 
the high technology oriented applications of the concept appears to be unlimited. 
However, in the near future the primary use of these new materials will most likely 
be limited to thermal barrier coatings (mainly in gas turbines), wear-resistant coatings 
in bearings, gears, cams and machine tools, and interfacial zones to bond basically 
incompatible materials such as diamond films and metal substrates (Kurihara et al, 
1990). 

Aside from the intentionally graded materials, there are also other materials in 
which thermomechanical properties vary continuously as a natural consequence of 
processing. For example, in the case of ion plating, the impact of charged particles 
causes considerable mixing of the two materials through sputtering, resulting in a 
coating that has a gradual change in its composition (Spalvins, 1985). Similarly, the 
electron microprobe analysis shows that in most diffusion bonding processes the 
atomic compositions of the two materials vary continuously across the nominal 
interface (Shiau et al, 1988, Brennan, 1991). At a greater length scale such materials 
as bones, sea shells, bamboo stems and shale/sandstone interfaces are examples of 
natural functionally graded materials. From a viewpoint of mechanics, the field in 
which material nonhomogeneity was first recognized and studied appears to be soil 
mechanics where generally the stiffness variation resulting from the change in over- 
burden pressure is too significant to ignore (Olszak, 1958). 

In layered structures such as ceramic-coated metal substrates, there are mainly 
three groups of fracture problems, namely surface cracking and crack penetration, 
debonding, and edge delamination. In trying to obtain analytical benchmark solu- 
tions, the problems are usually treated as being plane strain or axisymmetric. In this 
study we consider the problem of debonding in a composite layer which consists of a 
homogeneous substrate and a nonhomogeneous coating. It is assumed that the prob- 
lem is one of plane strain or generalized plane stress, and the elastic medium contains 
a crack along the interface (Fig. 1). The coating is processed in such a way that the 
thermomechanical properties of the medium are continuous with discontinuous deriva- 
tives and the kink line of the property distribution corresponds to the "interface". In 
addition to the parameter describing the degree of nonhomogeneity in the coating, the 
main variables in the problem are the dimensionless constants hx\a and h2/a where 2a, 
hi and h2 are, respectively, the crack length, the substrate thickness and the coating 
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h2 
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'    1 
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*i 

Fig. 1. Geometry of the interface crack for a functionally graded coating bonded to a homogeneous 
substrate. 

thickness. The crack surface tractions are assumed to be the only nonzero external loads. 
In similar studies considered previously it was generally assumed that the non- 

homogeneous medium consists of infinite or semi-infinite planes. The mode I and 
mixed mode plane strain crack problems were studied by Delale and Erdogan (1983) 
and Konda and Erdogan (1994), respectively. The corresponding axisymmetric prob- 
lem was considered by Ozturk and Erdogan (1993). The interface crack problem 
shown in Fig. 1 with hi oo, oo was studied by Delale and Erdogan (1988). 

2.    FORMULATION 

In the plane elasticity problem shown in Fig. 1, it is assumed that the substrate is 
homogeneous with elastic constants \xx, KU the coating is nonhomogeneous with elastic 
parameters pi2(y), K2(y), and /i2 is approximated by 

feW = Hiey (1) 

where ju,- is the shear modulus, K,■= 3 — 4v, for plane strain and K,- = (3 — v,)/(l + v,-) for 
generalized plane stress, v, being the Poisson's ratio ((' = 1,2). In previous studies it 
was shown that the influence of the variation in Poisson's ratio on stress intensity 
factors is rather insignificant and, therefore, K may be assumed to be constant through- 
out the medium. Thus, by substituting from the stress/displacement relations 

P- 

a>'>'= ^T 

a x  = n 
du     dv 

dy     dx 
(2a-c) 
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into the equilibrium equations and by using (1), for the medium 2, i.e. for 0 < y < A, 
we obtain 

(K+l) 
d2u2 

to2" 

d2u2    „ d2v2       /      ..fdu2     dv2, 

<K-l^+2^Sy
+^l\-8y' + ^] = °' 

d2v2    „ d2u2 8u2 dv7 <-1)^+(«+1)?+2^l+7<3-")^+,(K+1)*^' (3a,b) 

Equations similar to (3) with y = 0 are satisfied by the displacements w, and vx for 
medium 1, — hx < y < 0. 

By using standard Fourier transforms, for the nonhomogeneous layer 2 (Fig. 1) it 

can be shown that 

u2(x,y) = 
'oo      4 

.-00     1 

1      Poo      4 

£Q(a)e"'Vaxdo 

v2 (x,y)=^\     E «t(«)Ct(K)e"'''eiK da (4a,b) 

where C,, ..., C4 are unknown functions of a, «b ..., «4 are the roots of the charac- 
teristic equation 

3 —K 
n4 +2yn3 -(2a2 -y2)n2 -2a2yn + —— a2y2 +a4 = 0, 

1 ~T~ /c 

and HJ,, ..., m4 are given by 

mk(a) = 
— ia[2nk + y(3 — K)] 

(K+lK2 + y(K+lK-(ic-l)o:2 fc = 1. ,4. 

Solving (5) we find 

nx = n2 = i(-y + Reifl),    «3 = «4 = -~0 + Re~i9)' 

(5) 

(6) 

(7) 

R ■ 2„2 ()-2+4a2)2 + 16a2y 
3-K 
1+K 

1/4 

0 = itan-1 
4ay    /3 — K 

y2+4a2\1+K 

1/2 

(8a,b) 

where the bar stands for complex conjugate. 
Similarly, for medium 1, -A, < y < 0, y = 0 and from (5) it may be seen that 

n = + a are double roots. Thus, the solution of (3) with y = 0 may be expressed as 

u,(x,y) = 

Vi(x,y) = 

1 
2% 

1 

2% 
[(£, +B2y)e^ + (Bi+B4y)e-My}eixxda, (9a,b) 
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ia m ia   , 
B{ = - T1Al + -A2,    B2= - -r-A2, |a[ a |a| 

B3=—A3 + -A^,   54=—A (10a-d) 
|a| a |a| 

where Y4,, ..., A4 are again unknown functions of a. 
The unknowns Ck and Ak(k= 1,..., 4) are obtained from the following boundary 

and continuity conditions 

°2yy{x,h2) = 0,    a2xy{x,h2) = 0,    - 00 < x < 00, (1 la,b) 

olyy(x,-h{) = 0,    <7u.,,(x,-/z,) =0,    -co < x < co, (12a,b) 

(T2^(x, + 0) = alyy(x,-0),    cr2xy(x, + 0) = alxy(x,-0),    -00 < x < co, 

(13a,b) 

alyy(x,-0) = />,(*),    alxy(x,-0)=p2(x),    -a<x<a, (14a,b) 

u2(x, + 0)-u1(x,-0)=0,    v2(x, + 0)-v1(x,-0)=0,    \x\ > a,     (15a,b) 

where the crack surface tractions/?, and p2 are known functions. The homogeneous 
equations (11)-(13) may be used to eliminate six of the eight unknowns Ak, Ck 

(k= 1,..., 4) and the mixed boundary conditions (14) and (15) would give a pair of 
dual integral equations to determine the remaining two. 

3.    THE INTEGRAL EQUATIONS 

Replacing the mixed boundary conditions (14) and (15) by 

-r-[v2(x, + 0)-v}(x,-0)] =/i(x),    -00 <x< 00, 
ox 

—-[u2(x, + 0)-ui(x,-0)] =f2(x),    -oo<x<co, (16a,b) 
ox 

it is seen that all eight unknown functions Ak(cc) and Ck(a), (k = 1,... ,4) may be 
determined in terms of/i and/2 by using (11)—(13) and (16). It is also seen that (15) 
would be satisfied if we require 

fj(x) = 0,    \x\>a,   7=1,2, (17) 

£•(*) dx = 0,   7=1,2. (18) 
a 

The new unknown functions /, and f2 would then be determined by using the con- 
ditions (14). Referring to Chen (1990) for details, (14) may be expressed as follows 
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tK,j(x,t)fj(t)dt = ^-pl(x),    / = 1,2,    -a<x<a, (19) 

where the kernels Ku (ij =1,2) are known functions. 
In the crack problem under consideration the singular behaviour of the stress state 

near the crack tips will be dependent on that of the density functions/, and/2, which, 
in turn, is controlled by the singularities of the kernels Ki}. For a crack embedded in 
a homogeneous medium the kernels have the form 

KiJ(x,t)=-^x+gij(x,t),    (i,j= 1,2), (20) 

where the terms gtj are square integrable in —a^(x,t) < a and do not contribute to 
the singular nature of the solution. The Cauchy kernel shown in (20) leads to the 
conventional square-root singularity for/; and/2 and, indirectly, for the stresses. In 
piecewise homogeneous materials containing an interface crack (along the x axis) the 
kernels Ku are of the form (Erdogan and Gupta, 1971) 

Ku(x,t) = ~-+hn(x,t),    K12(x,t) = y2S(t-x) + hl2(x,t), 

K21(x,t)= -y2S(t-x) + h2](x,t),    K22(x,t)=j^x+h22(x,t), (21) 

where y, and y2 are bimaterial constants and the square-integrable kernels hu depend 
on the part/crack geometry as well as the material constants. With the kernels as 
given by (21) the integral equations (19) become one of the second kind, giving the 
well-known stress and displacement oscillations at the crack tips. 

In the present problem the kernels K0 which appear in (19) may be expressed as 
follows (Chen, 1990) 

Kijipc, t) = lim 
>'--o\    4 

K+l 
•j 

— 00 

FJy, a)ei«i>+i**-'> d<x + K?j(x, t), (21) 

where K°(x,t) are known, square-integrable functions. The singular behaviour 
of K,j at x = t is determined by the asymptotic values of Fu for |a[ -> oo. The lead- 
ing terms of asymptotic expansions of F,j{y,a) for |a| -> co are shown to be (Chen, 
1990) 

2ia 2iav      ^^ ,     N     2\a\y 

2|a|v ,     x 2ia 2\ay 

^^«> = ^f'   ^^a) = (^Ti)N+^T- (22) 

Thus, by using the relations 
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lim 
*oo                                                                 1 

eay sina(t — x)da = , 
o                                        '    ■*• 

/*CO 

lim ccyeuy sin u(t—x) da = 0, 
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(23a,b) 

from (21) and (22) it may easily be shown that 

KiJ(x,t)=j^+ku(x,t), 

kij(x, t) = Kfj(x, t) + 
K+\ 

[F,j(0, a) -F%(0, after*-» da.        (24a,b) 

The functions ktj are now square integrable and are treated as Fredholm kernels. 
From (24) and (19) it is clear that at the crack tips x = +a the unknown functions/, 
and f2 and consequently the stress state would have the conventional square-root 
singularity. For the crack geometry given by Fig. 1 the modes I and II stress intensity 
factors may then be defined and evaluated from 

&,(a) = lim Jl (x — a) avv (x, 0) = —lim 1-^/2(a — x)fi(x), 

k2(d) = lim y/2(x — a)oxy(x, 0) = —lim \J2{a — x)f2(x).        (25a,b) 
x->a x-*a K~\- 1 

The integral equations (19) are solved under the single-valuedness conditions (18). 

4.    ON THE SOLUTION OF INTEGRAL EQUATIONS 

To solve the integral equations (19), first the following normalized quantities are 
defined 

s = t/a,    r = x/a,    k?j(r,s) = aktj(x, i), 

fm=f(t)   pf{r)=Pi(x),    (ij) =(1,2), (26) 

giving 

fl        2 

E 
W=l 

+ kfj(r,s) ff(s)ds = 7^±^-pr(r),    («=1,2),    |r|<l.      (27) 

The fundamental solution of (27) is (1—s2)  lß and hence, the unknown functions are 
of the form 

f*(s)=Fi(sW-s2y'2,    -!<*<!,    («=1,2). (28) 

The new unknown functions Ft and F2 are bounded and, therefore, may be expressed 
as 
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CO 

Fi(s)=YJBijTj(s),    C=l,2), (29) 
0 

where the orthogonal functions T0, Tu ... are Chebyshev polynomials of the first 
kind and are associated with the weight function (1-s2)"1'2. The singular integral 
equations (27) are regularized by using (28), (29) and 

'        7}(.s) ds 

0,   7 = 0,    |r|<l, 

[/,._,(/-),   j>0,    M<1, 

r 
r-^y^-T    /\^Jr*-l),   7>0,    |r|>l, 

(30) 

where U„(r) {n = 0,1,...) is the Chebyshev polynomial of the second kind. By sub- 
stituting "from (28)-(30) into (27), truncating the series at j = n and using a suitable 
collocation technique (27) may be reduced to a system of linear algebraic equations 
in the unknown coefficients Bu (i = 1,2,j = 0,1,.. .)• By using the orthogonality of 7} 
and the single-valuedness conditions (18), it may be seen that 

5,, = 0,    (i=l,2). (31) 

After determining Bip from (25), (28), (29) and (31) the stress intensity factors may 
be obtained as 

*.(«) = -^T^IX.   k2(a) = -^pAl*: (32) 

Similarly, by substituting from (26), (28) and (29) into (16), the crack opening 
displacements may be evaluated as follows 

w2(x, + 0)-»,(*,-(>) = -y/al-x2'Z-B1jUj-l(xla),    \x\ < a, 
i J 

1 
K2(JC, + 0)-K,(JC,-0) = - Ja2 - x\ X " BvUj_, (x/a),    \x\ < a.     (33a,b) 

i J 

By using (28)-(30), in (27) the integrals involving the Cauchy kernel are evaluated 
in closed form and the remaining integrals are Gaussian with the weight (1 -s2)~V2. 
Such integrals can be evaluated quite accurately provided the functions kfj are bounded 
and continuous. However, by examining (24b), it was shown that at x = t (or r = s) 
the Fredholm kernels k,j had discontinuities which could be separated through asymp- 
totic analysis (Chen, 1990). It was also shown that the accuracy of the integrals in 
(27) involving k% is significantly influenced by the manner in which these dis- 
continuities are handled in numerical analysis. The leading terms giving the dis- 
continuities in kfj are as follows (Chen, 1990) 
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(kn(r,s),k%2(r,s)) ~ 
sinaa(s — r) % \s — r\ 
 da = 

(kf2(r,s),k^(r,s)) 
' cosaa(s — r) 

2 s — r 

da = — y0 — log | Aa(s — r) \ 
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(34) 

:da,    (35) 

where A is a positive constant and y0 is the Euler's constant, y0 = 0.57721566490. It 
was observed that a direct application of Gaussian integration methods to evaluate 
the integrals of discontinuous functions in (27) could give erroneous results. In the 
numerical analysis the discontinuous kernels shown in (34) and (35) were separated 
and the resulting integrals were evaluated in closed form by using 

"     Tn(s)    \s-r\ 2 
—}=== ds = -U„_l(r). 

, . /i_e2  s-r n 
-r,    « > 1, 

T„(s) n 
:log|^-r|d^= Tn(r),    n ^ 1. 

'1- 

(36) 

(37) 

After obtaining the stress intensity factors from (32), by using the asymptotic 
behavior of stresses and crack opening displacements given by (25) and the concept 
of crack closure energy, the strain energy release rate at the crack tip x = a may be 
evaluated as follows 

G(fl) ^-^-[kJW+kUa)]. (38) 

5.    RESULTS 

In some ceramic coatings and in, for example, dry film lubrication, the stiffness of 
the coating would be less than that of the substrate. In many other cases involving 
contact problems and some thermal barrier coatings, usually the coating is suffer 
than the substrate. Therefore, in all examples given in this study the normalized 
nonhomogeneity constant ya is varied between —3 and 3, which covers nearly all 
cases that may arise in practice. The calculated results are the stress intensity factors 
ku k2 and the strain energy release rate G obtained for two loading conditions, namely 
Pi(x) = —<T0,p2(x) = 0 and/?j(x) = 0,p2(x) = — T0. Three sets of results are obtained 
and presented by Chen (1990). In the first the effect of Poisson's ratio is examined by 
varying v between 0.01 and 0.499 for a fixed geometry hja = 100, h2/a = 1. In the 
second for fixed v = 0.3 and hja = 100 the results are given for h2/a = 100, 10, 2, 1, 
0.5,0.25. The third set of results are obtained for fixed v = 0.3, h2/a = I, and hja = 10, 
4, 2, 1. In this article only some sample results are presented. The results obtained for 
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G/Go 

Fig. 2. The influence of the Poisson's ratio on the strain energy release rate; loading: uniform crack surface 
pressure, a0. 

hx/a = h2/a = 100 are very nearly the same as that obtained by Delale and Erdogan 
(1988) for two semi-infinite media. 

Figure 2 shows the effect of Poisson's ratio v on the normalized strain energy release 
rate G/G0 for uniform normal tractions px = — a0, p2 = 0 where 

7l(K+l) 
a\a (39) 

is the corresponding value for a homogeneous infinite medium with elastic constants 
Hi and K. Note that the influence of v may be significant only for large negative values 
of ya. Also, for y = 0 the medium is homogeneous, the Fredholm kernels k* in (27) 
are independent of the Poisson's ratio v and consequently the normalized strain energy 
release rate and the stress intensity factors would be independent of v. 

In the next set of results given in Figs 3-8 it is assumed that v = 0.3, hja = 100 
and h2/a = 1, 0.5, 0.25. The figures show essentially the effect of the length of an 
interface crack on G, kx and k2 for a relatively thin FGM coating bonded to a 
homogeneous substrate. In these and the subsequent figures the normalizing quantities 
for the strain energy release rate and stress intensity factors are 

7r(K+l)    2 K = Po Ja,    (p0 = <T0 or T0), (40) 

respectively. It may be observed that generally the magnitudes of G, kx and k2 decrease 
as the stiffness of the coating increases, that is, as the relative thickness h2/a and the 
nonhomogeneity constant ya increase. 

Figures 9-12 show the effect of the substrate thickness hja on the normalized stress 
intensity factors for fixed values of v = 0.3 and h2/a = 1. It may be observed that for 
hja = 10 and hja = 4 the results are very nearly identical. In the homogeneous case 
of y = 0, for A, = h2, because of symmetry, the problem uncouples and consequently 
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G/Go 40 

781 

Fig. 3. The influence of hja on the normalized strain energy release rate; loading: uniform crack surface 
pressure <r0> v = 0.3, hja = 100, (1) hja = 1, (2) hja = 0.5, (3) hja = 0.25. 

k,/ko    5.5 

3.5 

2.5 

1.5 

0.5 

-1 0 

7a 
Fig. 4. The influence of hja on mode I stress intensity factor klt loading: GT„, v = 0.3, hja = 100, (1) 

hja = 1, (2) hja = 0.5, (3) hja = 0.25. 

we have k2 = 0 for mode I loading (px = — a0,p2 = 0) and kx = 0 for mode II loading 
(j)1 = 0,^2 = —T0). Under mode I loading the sign of k2 generally depends on the 
relative stiffnesses of the layers on the two sides of the interface crack. As seen in Fig. 
10, the relative stiffness is, in turn, controlled by ya and h2jhx. 

The mixed mode stress intensity factors ky and k2 may be used to determine the 
probable crack growth angle 0O at the crack tip which is measured from the positive 
x axis and is calculated from daBB{r, 0)/86 = 0, aBB{r, 0O) > 0 (Erdogan and Sih, 1963) 
or 
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ka/ko 0.5 

-1.5 

-2.5 

-3-2-10 1 2 3 

Fig. 5. The influence of h2/a on mode II stress intensity factor k2, loading: <r0, v = 0.3, hja = 100, (1) 
h2/a = 0.25, (2) h2/a = 0.5, (3) h2/a = 1. 

G/Go   2.1 

Fig. 6. The influence of h2ja on G, loading: uniform crack surface shear T0, V = 0.3, hja = 100, (1) h2ja = 1, 
(2) h2/a = 0.5, (3) h2ja = 0.25. 

kx sin 0O + fc2 (3 cos 0O — 1) = 0, 

3. 
k, cos 

2^0 -A:, sinön > 0. (41) 

Some calculated values of 0„ for v = 0.3, hja = 100, h2ja = 0.25, 0.5, 1, 2, 10 and for 
uniform tractions px = -a0,p2 = Q are shown in Fig. 13. The figure indicates that if 
the medium is isotropic with regard to the crack growth resistance Gc near the crack 
tip, maximum energy release and, as a result, further crack growth would take place 
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kt/ko    0.8 

783 

-3-2-10 1 2 3 

ya 
Fig. 7. The influence of h2/a on fe„ loading: T0, V = 0.3, A,/a = 100,(l)A2/a = l,(2)A2/a = 0.5,(3) hja = 0.25. 

fe/ko 1.3 n 

i        -2        -1 0 

73 
Fig. 8. The influence ofA2/a on fc2, loading: T0, V = 0.3,hja = I00,(\)h2/a = \,(2)h2/a = 0.5,(3)h2/a = 0.25. 

in a direction toward the less stiff material. On the other hand, if Gc is 9 dependent, 
then the crack growth direction 80 would be determined by maximizing G(0)/Gc(0), 
G(0) being the strain energy release rate for a small radial crack extension in the 
direction of 6. 

It should be observed that in formulating the problem, the crack surface tractions 
Pi and/>2 are assumed to be arbitrary functions of x. Therefore, the technique presented 
may be used to solve any quasi-static interface crack problem involving FGM coatings 
after properly separating the solution for the uncracked medium. Also, for the validity 
of the solution it is essential that the normal crack opening v£—vT be positive; 
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ki/ko 3.0 

-3-2-10 1 2 3 

Fig. 9. The influence of hja on k„ loading: cr0, v = 0.3, hja =1,(1) hja = 10, (2) hja = 4, (3) hja = 2, 
(4)A,/fl=l. 

kz/ko   0.3 

-0.1 

-0.7 

Fig. 10. The influence of hja on k2, loading: a0, v = 0.3, hja = 1, (1) hja = 10, (2) hja = 4, (3) /Z,/ö = 2, 
(4)A,/fl=l. 

otherwise the problem must be treated as a crack/contact problem (Erdogan and Wu, 
1996). For example, under pure shear loading px = 0, p2= — T0> V\ —V\ is an odd 
function of x and consequently the crack would remain partially closed (Chen, 1990). 
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k,/k„ 0.4 -, 

Fig. 11. The influence of hja on k„ loading: T0, V = 0.3, hja = 1, (1) hja = 1, (2) hja = 2, (3) hja = 4, 
(4)Ä,/a=10. 

kj/ko 1.6 

-3-2-10 1 2 3 

Fig. 12. The influence of hja on fe2> loading: T„, V = 0.3, hja = 1, (1) A,/a = 10, (2) hja = 4, (3) hja = 2, 
(4) *,/«=!. 

Hence, such a solution can be used only in superposition with other solutions that 
would give vt — v\ > 0 for —a<x<a. 
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Fig. 13. The effect of the coating thickness h2/a and the nonhomogeneity constant y on the probable crack 
growth direction 0O, loading: <r0, v = 0.3, hja = 100, (1) hja = 10 and 100, (2) h2ja = 2, (3) h2/a = 1, (4) 

h2/a = 0.5, (5) hja = 0.25. (The angle 0O is measured at the crack tip a from the positive x axis.) 
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ABSTRACT 

Crack propagation along one of the interfaces between a thin ductile adhesive layer and the elastic substrates 
it joins is considered. The layer is taken as being elastic-plastic, and the fracture process of the interface is 
modeled by a traction-separation law, characterized by the peak separation stress a and the work of 
separation per unit area T0. Crack growth resistance curves for mode I loading of the adhesive joint are 
computed, with emphasis on steady-state toughness, as a function of three extrinsic effects: layer thickness, 
layer-substrate modulus mismatch, and initial residual stress in the layer. Conditions under which sepa- 
ration first occurs well ahead of the initial crack tip are discussed. 

1.    SPECIFICATION OF THE MODEL 

This paper continues the study begun by Tvergaard and Hutchinson (1994) in which 
an embedded fracture zone model is applied to the mode I fracture of an adhesive 
joint comprised of a thin elastic-plastic metal layer joining two elastic substrates. The 
present work employs the model to investigate the influence on joint toughness of 
both the elastic mismatch between the layer and the substrates and the residual stress 
in the layer. As in the earlier study, the thickness of the ductile layer is another 
extrinsic variable which comes into play. 

The approach adopted was first introduced by Needleman (1987) to study particle 
debonding in metal matrices and subsequently by Tvergaard and Hutchinson (1992, 
1993) to model crack growth resistance in homogeneous solids and along interfaces. 
A traction-separation law simulating the fracture process is embedded within an 
elastic-plastic continuum as a boundary condition along the line extending ahead of 
the crack. In the case of an interface joining dissimilar materials, the separation law 
necessarily involves both the normal and shear tractions and the two associated 
relative displacements of the surfaces across the interface. 

789 
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0(A) 

o   X,        X2 1     X 

Fig. 1. Geometry of system and traction-separation relation for interface. 

1.1. Traction-separation law for the interface 

Following the notation for the law introduced in Tvergaard and Hutchinson (1993, 
1994) let <5n and c5t be the normal and tangential components of the relative dis- 
placement of the crack faces across the interface in the zone where the fracture 
processes are occurring, as indicated in Fig. 1. Let <5„ and 5\ be critical values of these 
displacement components, and define a single nondimensional separation measure as 

k = J(ÖJÖ<n)
2 + (öt/ö<)2 (1.1) 

such that the tractions drop to zero when k=\. With a(k) displayed in Fig. 1, a 
potential from which the tractions are derived is defined as 

<t>(ön,öt) = öl a{k') dk'. (1.2) 

The normal and tangential components of the traction acting on the interface in the 
fracture process zone are given by 

T = 
d<S      a{k) Sn 

dön k   <5cn 

T,= 
JJt~   k   8\öc

t' 
(1.3) 

The traction law under a purely normal separation (<5t = 0) is Tn = a(X) where k = ön/ö
c

n. 
Under a purely tangential displacement (<5n = 0), Tt=(5cJ5c

l)a(k) where k = öt/ö
c

t. 
The peak normal traction under pure normal separation is &, and the peak shear 
traction is (ScJSi)a in a pure tangential "separation". The work of separation per unit 
area of interface is given by (1.2) with k= \. For the separation function a(k) specified 
in Fig. 1, 

r0=\döi[i-xl+x2]. (1.4) 

The parameters governing the separation law of the interface are the work of the 
fracture process T0, the peak stress quantity a, and the critical displacement ratio 
b~ll<)\, together with the factors kx and k2 governing the shape of the separation 
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function. Note that use of the potential ensures that the work of separation is T0 

regardless of the combination of normal and tangential displacements taking place in 
the process zone. Experience gained in the earlier studies suggests that the details of 
the shape of the separation law are relatively unimportant. The loading in the present 
ductile layer problem is mode I. Nevertheless, the asymmetry introduced by the 
existence of the crack on one interface and not the other gives rise to some tangential 
separation. However, the separation displacements are predominantly normal, such 
that the choice of the ratio ScJöt also has relatively little influence on the predictions 
of the macroscopic toughness. The two most important parameters characterizing the 
fracture process in this model are T0 and a. 

1.2. Continuum properties of the ductile adhesive and the elastic substrates 

The layer has thickness h and is assumed to be elastically isotropic with Young's 
modulus E and Poisson's ratio v. The residual stress state in the unloaded layer is 
assumed to be equibiaxial, acting parallel to the plane of the layer, of magnitude aR. 
Commonly, when a metal layer joins two ceramic substrates, a residual tensile stress 
in the thin metal layer develops due to thermal expansion mismatch and the conse- 
quence of cooling from a high bonding temperature. The plastic response of the layer 
material is characterized by J2 flow theory, i.e. the standard isotropic hardening 
incremental plasticity theory based on the Mises invariant. The tensile curve of true 
stress versus true strain for the layer material is taken to be 

e = a/E for   a < aY 

£ = (aY/E)(a/aYy
IN   for   a > aY 

where aY is the tensile yield stress and /Vis the strain hardening exponent. The primary 
effect of the residual stress is its influence on the onset of yield when the joint is 
loaded. 

The two elastic substrates joined by the adhesive layer are assumed to be identical 
and isotropic with Young's modulus Es and Poisson's ratio vs. 

1.3. Mode I loading for long cracks and definition of steady-state toughness 

The focus in this paper is on symmetrically loaded joints containing interface cracks 
that are long compared to the extent of the plastic zones induced in the layer. Under 
this condition, the asymptotic problem indicated in Fig. 1 applies, wherein the crack 
is taken to be semi-infinite and is loaded remotely by the symmetric mode I stress 
field with amplitude given by the stress intensity factor K. Irwin's relation between 
the energy release rate G and the stress intensity factor K for a mode I, plane strain 
crack in an elastic solid is 

G = (±zßlK2 (L6) 

This relation applies to the asymptotic problem of Fig. 1 with G interpreted as the 
remote, or applied, energy release rate. The crack growth resistance T is identified 
with G under conditions of crack advance. There is one material length quantity, R0, 
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in the model, which was introduced in the study of mixed mode interface fracture by 
Tvergaard and Hutchinson (1993) 

Rn = 
Mi-ß2) 

(l-v2)     (l-vs
2) 

E E, aY 

where ß is the second Dundurs elastic mismatch parameter 

1 ^(l-2vs)-fe(l-2v) 
P     2   ^(l-v^ + ^O-v) l • 

and n and ^s are the shear moduli. In the absence of elastic mismatch (1.7) reduces 
to 

to-nr^^r- (L9) 
3TI(1 — V   )     <TY 

The length quantity R0 can be thought of as an estimate of the size of the plastic zone 
of the interface crack when r = T0 and h» R0. 

The model has been used to compute the history of T as a function of crack advance 
Afl as dependent on the parameters of the system. From this resistance curve data, 
one can identify a toughness level characterizing initiation of crack growth and an 
asymptote, denoted by rss, characterizing the steady-state condition wherein the crack 
advances under constant T. Typically, this asymptote is attained after a crack advance 
on the order of several times R0. The steady-state toughness, Tss, provides the most 
meaningful measure of the joint toughness, and it will be this quantity which will be 
featured in the sequel. The nondimensional relation between the steady-state tough- 
ness and the parameters of the model is 

Tss        (a h   E,  <7R\ „ ,^ 
=?- = FI—,N,—,-£,—). (l.io) 
T0        \(TY       RO   E  <JYJ 

There is also a weak dependence on 8°/öl, v, vs, aY/E, Xx and X2. Given the large 
number of parameters in the model, it is not possible to present or even compute the 
full parametric dependence. In this paper, attention is directed to the parameters 
shown explicitly in (1.10), with the exception of N, which is fixed at 0.1 in all the 
computations corresponding to a typical strain hardening level. Each value of rss/ro 

is obtained by computing the full resistance curve, starting from initiation to a level 
of a crack advance, Aa, such that T approximately attains the asymptote, and, 
consequently, extensive numerical computation lies behind the results reported in 
Section 3. 

2.    NUMERICAL METHOD 

The problem considered is an extension of the problem analyzed by Tvergaard and 
Hutchinson (1994), and the numerical method employed is essentially the same as 
that presented in that earlier paper. The method exploits the fact that the plastic 
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deformation takes place only in the thin layer of thickness h, while the solids on either 
side of the layer remain elastic. The region analyzed numerically is divided into three 
sub-regions, where the outer regions comprising the elastic substrates are semi-circular 
with radius A0, and region occupied by the layer is rectangular with dimensions h by 
2A0. The finite element mesh consists of quadrilaterals, each built up of four triangular, 
linear-displacement elements. The meshes used for the substrate region are identical 
to those employed in the earlier reference. In the layer the quadrilaterals are rec- 
tangular with edge nodes located so that they fit the edge nodes of the adjacent region. 
The initial crack tip is located at xx = x2 = 0, and a uniform mesh region of length B0 

is used in front of the initial crack tip to model crack growth. The length of one 
square element in this uniformly meshed region is denoted by A0. 

On the circular edges of the substrate regions loads corresponding to the tractions 
of the mode I stress field are applied, with amplitude K. At the two ends of the thin 
layer the edge loads are neglected, which introduces a very small error as long as h/A0 

is small. At the interface between the lower substrate and the layer, the conditions to 
be satisfied are 

u'foJ = «'(»/-).    u2(r]+) = u2(rj-) (2-1) 

Ti(rl + )=-T1(ri_),    T\n+) = -T\n_) (2.2) 

where r\ is the coordinate along the interface and the " + " denotes a value just above 
the interface and the "-" denotes a value just below. Along the upper interface, the 
initial crack surfaces for xx < 0 are traction-free, while for xx > 0 the displacements 
and tractions are related by the traction separation law of the interface of Section 1.1. 
Thus, for Xi > 0 

u1(x1 + )-u1(xl_) = öt(xl),    u2(xl + )-u\x}_)=Sn(xl) (2.3) 

r'(x1+) = -r1(x,j = rt(x1),   T\X]+) = -r2(x,j = rn(x,).    (2.4) 

For the upper substrate region, the linear elastic equations are solved once at the 
start to obtain linear relations between the nodal displacements along xx > 0, the 
corresponding nodal forces, and the load amplitude K, using a Rayleigh-Ritz finite 
element method. Similar linear relations are obtained between nodal displacements 
on the lower interface boundary, the corresponding nodal forces, and the amplitude 
K. In the layer, elastic-plastic deformations take place following a finite strain gen- 
eralization of J2 flow theory, as has been described in more detail in Tvergaard and 
Hutchinson (1992). Thus, solutions in the layer have to be obtained incrementally, 
and in each increment linear relations are obtained between nodal displacement 
increments and the corresponding nodal force increments on the upper and lower 
edges of the layer. 

The relations for the three sub-regions are finally assembled using (2.1)-(2.4) to 
obtain a set of linear algebraic equations for the increment in the load amplitude K 
and the nodal displacement increments along the layer edges. On the initial part of 
the resistance curve, an increment in K is prescribed, but this procedure is unstable 
when ^approaches its asymptote. Then, the Rayleigh-Ritz method is used to control 
a monotonic increase of displacement differences at the crack tip. 
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In all of the computations, the properties of the elastic-plastic layer are specified 
by the parameters aY/E = 0.003, v = \, and A^ = 0.1. Different levels of elastic modulus 
mismatch between the layer and the substrates are considered {EJE = 1, 3, 6 and 12), 
all with vs = v = \. The separation law is specified using 8c

n/8
c

t = 1, li = 0.15 and 
X2 = 0.5 with ajaY varied. The preceding paper established that the predictions for 
the present class of problems are not strongly sensitive to 51/ö\, Ai or X2. 

Let A0 denote the length of one of the small elements in the uniform mesh along 
the interface in the crack growth region. Most of the computations have been carried 
out for a region size specified by A0 = 44,000 A0 and B0 = 40 A0. Mesh refinements 
have been carried out to test convergence. Based on these trials the computations for 
the elastic mismatches with EJE = 3, 6 and 12 were performed with A0 = 10 SI, 
whereas the computations with no modulus mismatch were computed with A0 = 5 
5°n. For the larger values of the layer thickness h, compared to A„, the mesh size is 
stretched across the layer in such a way that the row of quadrilateral elements along 
the crack plane are square. In each of the semi-circular elastic regions the number of 
triangular elements is 6248 and the number of nodal points is 3203. In the thin elastic- 
plastic layer the number of triangular elements is 8800 and the number of nodal points 
is 4531. 

3.    STEADY-STATE TOUGHNESS 

The full set of numerical results for Tss/r0 as a function of a/oY, h/R0, EJE and 
erR/<7Y are shown in the four parts of Fig. 2. Parts (a)-(d) correspond to values of EJE 
of 1, 3, 6, and 12, respectively. Figure 2(a) and (c) display results for aK = 0 (the 
solid-line curves), as well as for a biaxial tensile residual stress in the layer nearly at 
yield, ffR/a0 = 0.95 (the dashed-line curves). The solid-line curves for the case of no 
elastic mismatch in Fig. 2(a) were presented earlier by Tvergaard and Hutchinson 
(1994). 

The main qualitative trends evident in Fig. 2 can be summarized as follows, (i) 
Normalized steady-state toughness increases strongly with a/aY, with all other para- 
meters held fixed. This dependence has been discussed in some detail in the authors' 
earlier papers on the model, (ii) Very thin layers, in the sense that h/RQ« 1, have 
almost no enhancement of toughness due to plastic deformation, i.e. Fss s r0. This 
limit, in which the layer thickness is small compared to the size of the unconstrained 
plastic zone, will be discussed further in Section 4. (iii) At the other limit, when the 
layer thickness is larger than the plastic zone (h/R0 »1), rss/r0 becomes independent 
of h, because the interaction of the plastic zone with substrate on the other side of the 
uncracked interface becomes negligible. The value of h/R0 at which the toughness 
becomes independent of the layer thickness is a function of a/aY because the plastic 
zone size increases with this parameter, (iv) The ratio of the substrate elastic modulus 
to that of the layer, EJE, has a fairly significant effect such that joints with relatively 
stiff substrates have higher toughnesses, all other parameters remaining the same, (v) 
The residual stress in the layer aK has a major effect on joint toughness. Tensile residual 
stresses lower the joint toughness, while compressive stresses raise the toughness. 

The influence of EJE on the normalized steady-state toughness is isolated in Fig. 
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b) 
Fig. 2. Normalized steady-state toughness of the joint as a function of layer thickness for various values of 
d/(TY. (a) EJE = 1, (b) EJE = 3, (c) EJE = 6, and (d) £,/£" = 12. The other parameters are specified in the 

text. 

3, where curves of rss/T0 as a function of ajaY are plotted for large values of h/R0 

chosen to ensure that the toughness is independent of h. In the range of &/aY for 
which the toughness is magnified above T0, an increase in EJE leads to an increase in 
rss/r0. Judging from the results in Fig. 3, it appears that the full effect is achieved 
for modulus mismatches satisfying EJE> 10. It seems likely that the toughness 
enhancement is related to the ability of suffer substrates to better shield the layer near 
the tip, thereby lowering the peak normal stress on the interface ahead of the tip. 

A cross-plot of Tss/r0 as a function of erR/<7y is shown for one set of parameters in 
Fig. 4. The case shown has EJE = 6, d/aY = 3, with aY/E = 0.003 and N = 0.1. The 
calculations were carried out using h/R0 = 13.46, and thus these results are also in the 
range where the plastic zone does not extend across the layer and the joint toughness 
is independent of/z. The role of residual stress is clearly significant. Qualitatively, the 
residual stress effect can be thought of as raising (when <rR > 0) or lowering (when 
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Fig. 2. Continued. 

ffR < 0) the additional effective stress needed to cause yield, thereby suppressing or 
enhancing plastic deformation. To understand this, note that, with respect to plastic 
yielding, a residual biaxial stress aR acting parallel to the plane of the layer is equivalent 
to a uniaxial stress - aR acting normal to the plane of the layer. (This follows from 
superposition of a hydrostatic stress state — <7R<5y, which has no effect on the yield 
condition.) Thus, the onset of plastic yielding at any point in the layer near the tip 
will be delayed (or advanced) to a higher (or lower) local stress normal to the interface 
resulting from the applied K, depending on whether aK > 0 (or crR < 0). The effect is 
roughly equivalent to decreasing or increasing a. 

In the examples shown in Figs 2-4, the peak interface stress a is attained immediately 
ahead of the crack tip such that debonding links back to the crack tip as crack advance 
occurs. The stress distribution in a thin metal layer ahead of the crack tip in the layer- 
substrate geometry considered here has also been studied by Varias et al. (1991) for 
the stationary crack without any debonding. The constraint imposed on the layer by 
the elastic substrates gives rise to a large component of hydrostatic tension in the 
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E,/E=1 

U I A J f J (Tl      w /CTY 

Fig. 3. Dependence of steady-state toughness of the joint on ä/oy for various EJE, all for the limit of large 
h/R0 for which the layer thickness exceeds the height of the plastic zone. 

-1 0 °i&, 1 

Fig. 4. Effect of residual stress on the steady-state toughness for the limit in which h/R0 » 1. In this example, 
<r/<7Y = 3 and EJE = 6. 

layer such that the peak in the interface stress occurs at a distance ahead of the tip. 
This is the location where the interface stress first attains a. If a/oy is sufficiently large 
and if the layer is sufficiently thin, then the peak stress on the interface is attained so 
far ahead of the tip that debonded patches occur which are unconnected to the crack 
tip. An example for which this occurs is shown in Fig. 5 for the case where a\aY = 5, 
EJE = 1 and h/R0 = 0.186. The figure displays the deformed mesh and crack opening 
profile at three levels of applied load corresponding to T/r0 = 2.06, 2.90, and 3.73. 
At the lowest of the three load levels, the peak stress has just been attained and 
debonding of the interface has begun at a distance of approximately 2h ahead of the 
blunted crack tip. At the two higher load levels, an isolated debonded patch opens 
and expands. Of course, the present calculations are two dimensional, while the actual 
process will be three dimensional. Debonding in roughly equiaxed patches well ahead 
of the crack tip has been observed and documented for Au/Al203 interfaces by 
Reimanis et al. (1991) and Turner and Evans (1996) and has been studied theoretically 
by He et al. (1996). 

4.    APPROXIMATE ANALYSIS OF MODEL FOR LARGE ajaY 

In this section an approximate analysis of the model will be carried out under the 
assumption that ajaY is sufficiently large that interface debonding starts at a point x 
at least several layer thicknesses ahead of the tip. Thus, the focus will be on initiation 
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ryro=2.06 

r/To=2.90 

r/To=3.73 

Fig. 5. An example illustrating debonding of a patch unconnected to the crack tip at three levels of load. 
For this example, a/aY = 5, EJE = 1 and h/R0 = 0.186. 

of debonding in the regime discussed above where debonding starts in the form of 
isolated patches ahead of the tip. While highly approximate, the analysis does capture 
the qualitative dependencies on some of the most important parameters and informs 
aspects of behavior in the regime where debonding extends back to the tip. 

Assume there is no residual stress in the layer and the layer material is elastic- 
perfectly plastic. When the layer is very thin, the elastic stress distribution for the 
limit of zero layer thickness will be used to estimate the stress acting on the interface 
at the point where the peak stress is attained. That is, from a22 = K\j2%xx, it follows 
that if K is the value of the stress intensity factor at which debonding starts 

<j = Kjs (4.1) 

In the portion of the layer between the tip and the point of initial debonding, i.e. 
0 < x, < x, the xx component of stress increases linearly according to don/dx, = 
(2/y/3)(rY/h. This follows from simple equilibrium and the fact that the layer undergoes 
plastic shearing along its top and bottom surfaces (Hill, 1950; Varias et al, 1991). 
The well-known stress state at the tip of a crack in an elastic-perfectly plastic material 
applies such that, at xx = 0, au s 2aY. Therefore, at the location of the peak stress, 
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au = 2aY+{2ly/y)aY{xlh). The state of stress at the location of the peak satisfies 
yield and is approximately a state of hydrostatic tension superimposed on a state of 
uniaxial tension, with a22 = ou + aY. Thus, a second approximate relation between 
the peak debonding stress and the location of the onset of debonding is 

a = 3aY + (2/^3)<jY(x/h). (4.2) 

Eliminate x from (4.1) and (4.2), using (1.6), to obtain the estimate off at which 
the debonding condition is first attained 

The location of the point of first debond is 

Note that f does not depend on T0; it is associated with the attainment of a critical 
stress at some point on the interface ahead of the crack tip. Application of the above 
formulas is limited to values of ajaY sufficiently large such that x/h ^ 2, i.e. roughly 
ff/ffy Js 5. Finally, normalize the estimate in (4.3) by T0, using (1.7), to obtain 

(4.6) 

where 

1      (l-ß2)fl-v2 _  1 
E*~      2 

Formulas (4.3) and (4.5) reveal the exceptionally strong dependence on ajaY, which 
is also evident in the other regime in the plots of steady-state toughness in Fig. 2. 
Note that the trend of f/r0 with EJE implied by (4.5) is opposite to that for rss/r0 

in Fig. 3 in the range h/R0 » 1. Numerical calculations for f /r0 as a function of EJE 
in the range of small h/R0 with large a/aY have not been carried out. 

Finally, a connection is noted between the approximate results for the onset of 
debonding and the numerical results for steady-state toughness in Fig. 2. From the 
plots in Fig. 2, it can be seen that in the range of small h/R0 (e.g. h/R0 < 1/2) 
the normalized joint toughness varies approximately linearly with layer thickness 
according to 

^=l + cA (4.7) 
1 0 Ko 

or 

r0+c^ = r„+3,c^| (4.8) 
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where C depends on a/aY and N but not on T0. In this range, the enhancement of 
joint toughness above the work of separation of the interface is independent of T0, as 
is the case for the result in (4.3). In fact, it can be noted that the enhancement in 
steady-state toughness in (4.8) has precisely the same parametric dependence as (4.3). 
Qualitatively, the trend of f with a given by (4.3) reflects the trends shown in Fig. 2 
in the range of small h/R0. 
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ABSTRACT 

Multilayered metal-ceramic composites exhibit unique fracture characteristics that result from the need to 
reinitiate cracks in adjacent ceramic layers across intact metal layers. Quantitative knowledge of the stress 
and strain fields around cracked brittle layers is required to predict the fracture modes of such composites. 
In this paper, two competing fracture modes are analysed for a laminate containing a precrack that spans 
several layers: fracture is either by co-planar crack growth within the ceramic layers ahead of the initial 
crack, or, by multiple cracking within the ceramic layers. The appropriate boundary conditions employed 
in the numerical modelling are determined by comparing finite element predictions with experimental 
observations of elastic and plastic strain distributions around single cracks in A1/A1203 laminates using 
moire interferometry. It is found that plastic yielding of the metal layers encourages single, co-planar crack 
growth instead of multiple cracking. This competition between single and multiple cracking is summarised 
in the form of a fracture map. 

1.    INTRODUCTION 

Before brittle-ductile multilayered composites, or laminates, can be used in engin- 
eering components, the relationship between their microstructure and fracture modes 
must be assessed quantitatively. Of particular importance is the capability to predict 
whether fracture occurs by the propagation of a low-energy single dominant crack or 
by high energy multiple cracking within each brittle layer (Fig. 1) (Shaw et ah, 1993; 
Huang et ah, 1994; Huang and Zhang 1995; Pateras et ah, 1995). 

In both cases, it has been shown that tensile and flexural loading of pre-cracked 
laminates causes nucleation of cracks in intact ceramic layers near the crack tip. 
Although yielding of the metallic layers lowers the stresses in the intact ceramic layers 
ahead of the crack tip as compared to a fully elastic system (Chan et ah, 1993), the 
magnitude of the stress relaxation tends to be minor, even with metals of low yield 
stress, such as aluminium. The most important factor affecting such stress con- 
centrations is the thickness of the metal layer, primarily as a consequence of the 
increased distance between the crack tip and the next ceramic layer. Although this 
effect has been confirmed for low-metal volume fraction materials (Shaw et ah, 1993), 
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the situation has not yet been quantitatively assessed for cases where the thickness of 
the metal layers is greater than that of the ceramic layers. 

After cracking of the ceramic layers total failure of the laminate occurs by rupture 
of the intervening metal layers. Whether or not this involves multiple cracking of 
individual ceramic layers depends in part on how stress is transferred from the cracked 
ceramic layers into the remainder of the material (Shaw et al, 1993; Huang et al, 
1994; Huang and Zhang, 1995). The present paper represents a first step towards the 
solution of this problem by treating the limiting case of an initially unloaded, pre- 
cracked system (Fig. 2) with ceramic layers of deterministic strength. The effects of 
local variations in the strength of the ceramic layers is treated elsewhere (Shaw, 1995). 

2.    PROBLEM SPECIFICATION 

Consider a laminate geometry that contains two cracks: one of length, a0 (the 
precrack), and a second crack, which is considered to have reinitiated in the ceramic 
layer adjacent to the precrack tip, layer Cl [Fig. 2(a)]. A Cartesian co-ordinate system, 
(x,y), is defined with its origin at the tip of the precrack; see Fig. 2(a). Previous 
analyses of this problem have shown that the maximum value of the axial component 
of stress, ayy, occurs either ahead of the second renucleated crack, i.e. in ceramic layer 
C2, which is uncracked [Fig. 2(a)], or above and below the renucleated crack in layer 
Cl (Shaw et al, 1993; Huang et al, 1994; Huang and Zhang, 1995). The location of 
this peak stress is dictated by the importance of two roles played by the bridging 
metal ligament. The first role is to decrease the axial stress in layer C2 by crack 
bridging, and the second is to increase the stress in layer Cl (Shaw et al, 1993; Huang 
et al, 1994; Huang and Zhang, 1995). Microstructural parameters affecting the 
relative magnitudes of the crack tip and wake stresses include the relative thickness 
of the layers (Shaw et al, 1993; Huang et al, 1994; Huang and Zhang, 1995), and 
the yield stress of the metal (Huang et al, 1994; Huang and Zhang, 1995). The effect 
of the length of the precrack, however, is as yet unknown. 

Plastic yielding of metal layers Ml (the one that bridges the cracked ceramic layers) 
and M2 (that separates the tip of the renucleated crack from layer C2) strongly 
influences the location of the peak axial stress. Plastic flow in layer Ml decreases the 
crack wake stresses by reducing the magnitude of the surface traction acting on the 
crack face, and increases the stress in layer C2 due to a loss of crack shielding. Plastic 
flow in layer M2, however, reduces the stress in layer C2, as described earlier. The 
ratio of the cracking stress of the ceramic, ac, to the flow stress of the metal, ay, is 
therefore an important parameter in determining the location of the peak axial stress 
(Huang and Zhang, 1995). For example, raising this ratio for cases with an infinite 
precrack and where the peak axial stress is in the cracked ceramic layer is predicted 
to shift the location of peak stress to the intact ceramic layer ahead of the crack tip 
(Huang and Zhang, 1995). However, since there is interest in initial precracks as short 
as a single ceramic layer thickness, one goal of the present investigation is to determine 
the effect of such short cracks on the fracture mode. Finally, a primary aim of the 
present investigation is to examine the validity of finite element analyses by comparing 
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(a) 
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(b) (c) 

Increasing Load 

3 mm 

Ml 
Alumina 

Aluminium 

fl 
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0*Load 

Displacements: 
1 
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Fig 3 Moire interferographs showing longitudinal displacement fields accompanying a flexural experiment 
described in the text. No cracks are present in (a), whereas a crack has formed in the left ceramic layer in 
(b) through (d). The fringes correspond to contours of constant displacement in the vertical (y) direction, 
with a separation of 0.42 /mi/fringe. 
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Load, cr, 
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Metal Layer, M1 
Metal Layer, M2 

Ceramic Layer, C2 
Ceramic Layer, C1 

Multiple Cracking 

t   I   M 
Dominant Cracking 

(b) (c) 

Fig. 2. Schematics illustrating (a) the initial geometry and (b), (c) subsequent cracking modes. The cracking 
sequence in (b) corresponds to multiple cracking and in (c) corresponds to co-planar dominant cracking. 

predictions for crack tip strain fields obtained by finite element analysis with those 
obtained experimentally by moire interferometry. 

3.    STRESS ANALYSIS OF CRACKED, LAYERED GEOMETRIES 

In this section we employ the finite element method to determine the stress and 
strain fields within the different layers of a cracked geometry. Two situations are 
examined in detail. In Section 3.1, the underlying assumptions of the finite element 
model are examined by comparing predicted strain fields around a single crack in an 
A1/A1203 laminate subject to three point flexural loading with data obtained by moire 
interferometry. Particular attention is paid to modelling the crack tip that impinges 
on the metal layer and the nature of the interfacial bond between the metal and 
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ceramic layers. In Section 3.2 of the finite element analysis, the stress fields in the 
vicinity of the precrack tip are determined subject either to remote tensile loading or 
the asymototic crack-tip displacement field, assuming small-scale yielding. A range 
of layer thickness ratios, precrack lengths and remote loads are investigated and the 
results are used to assist in the construction of a fracture map (Section 4). 

All the finite element analyses incorporated the following features: (i) only the 
upper half of the laminate specimen geometry was modelled, by symmetry con- 
siderations, (ii) the lateral faces of the mesh are traction-free, (iii) the crack faces are 
traction-free, (iv) the lower surface of the bridging metal layer, and the uncracked 
parts of the specimen were constrained against displacement in the vertical (y) direc- 
tion, but not the horizontal (x) direction. The analyses were conducted using plane 
strain conditions and a mixture of 8-noded quadrilateral and 6-noded triangular 
elements. Large deformation analyses with hybrid elements were used with perfect 
bonding between the layers. 

3.1.    Single crack geometry: flexural loading 

3.1.1. Flexural loading: moire interferometry experiments. High-resolution strain 
mapping experiments were conducted around a single crack in A1/A1203 laminates 
subject to three-point flexural loading using moire interferometry (Post, 1987). A 
description of the experimental procedure is summarised in the Appendix. Experi- 
ments were conducted using aluminium/alumina laminates containing three ceramic 
layers and two metal layers in three point flexure. The dimensions of the beams used 
are summarised in Table 1. During initial loading, the beams exhibited a fringe pattern 
consistent with simple flexure [Fig.3 (a)]. For the case illustrated in Fig. 3, when the 
strain in the outer ceramic layer reached the value of 8 x 10"4, a crack initiated in the 
outer ceramic layer. This crack tunnelled through the layer and arrested at the 
interface between the ceramic and metal layers. A convergence of fringes was observed 
in the metal layer in the vicinity of the crack tip, corresponding to a strain inten- 
sification within the metal layer associated with the presence of the crack [Fig. 3(b- 
d)]. As the level of the remote flexural load was increased, the number of fringes 
increased [Fig. 3(b-d)]. The distribution of axial strain, eyy, along longitudinal tra- 
jectories within the metal and uncracked ceramic layers were determined from the 
interferographs for comparison with the numerical predictions. 

Typical distributions of the axial strain component, eyy, in the metal layer are 

Table  1.  Dimensions of mechanical test 
specimens (moire interferometry) 

Outer roller (mm) 40 
Specimen height, h (mm) 3.5 
Specimen width, b (mm) 4 
Number of ceramic layers 3 
Number of metal layers 2 
Ceramic layer thickness (mm) 0.5 
Metal layer thickness (mm) 1.0 
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plotted as a function of vertical distance from the crack plane in Fig. 4. Results are 
shown for three trajectories located at positions from the crack tip of 1/4, 1/2 and 3/4 
of the metal layer thickness, at a fixed bending moment of 1.5 Nm. These are denoted 
as trajectories A, B and C, respectively. The strains were not measured experimentally 
within ~ 50 fim of the crack tip (0.05 hm), as a result of disintegration of the epoxy 
diffraction grating within this region. The axial strains in trajectory A were the highest, 
and decreased for trajectories B and C, which were located further from the crack tip. 
In all three trajectories, a peak in strain was observed at a distance from the crack 
plane corresponding to approximately one ceramic layer thickness. The peak axial 
strain in trajectory A was ~1.3xl0"3. For all three trajectories, the strain then 
decreased with further distance from the crack plane, until a far-field axial strain was 

1.5 10" __ r   ,.,                , 

L Trajectory A 

ii    \ • 

■ "l   Experiment 
* /     (Moire) 

—    Predicted (FEM) 

1 10"3 

Longitudinal 
Strain, e^ 

5 10-4 h 1        *    ft "• 

-V---^"-'^ 
n 1              1 

0 12 3 4 

Distance from Crack, y (mm) 

c Ceramic 

f        \    Flexural Load 

Crack 

Fig. 4. Distributions of longitudinal strain, ery, vs distance from the crack plane, y, within the metal layer 
along three different trajectories. The applied bending moment is 1.5 Nm. Both experimental measurements 

and numerical predictions are shown. 
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reached at a distance of ~2mm (twice the metal layer thickness). The magnitudes of 
the steady-state far-field strains were well below the yield strain of the metal and the 
cracking strain of the ceramic. 

The axial strains are plotted in Fig. 5 for two different magnitudes of applied 
bending moment (1.5 and 2.0 Nm) for trajectory B. The strain distribution for the 
low load case is the same as in Fig. 4. The magnitude of the peak axial strain within 
the metal increased by over 100%, from 9 x 10"4 to 2.1 x 10~3. The distance from the 

2.5 10r 

2 1CT 

Longitudinal 
Strain, £„ 

1.5 10"3 

1 1(T 

5 10" 

Ceramic 

12 3 4 

Distance from Crack (mm) 

(        \    Flexural Load 

f   W/m% 
min     S. Metal /% 

Crack- 

Strain Trajectory B 

c 

Fig. 5. Distributions of longitudinal strain, e„., vs distance from the crack plane, y, along the middle of the 
metal layer for applied bending moments of 1.5 and 2 Nm. Both experimental measurements and numerical 

predictions are shown. 
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crack plane over which the strains were increased relative to the remote strains was 
also greater for the case of a higher remote load. 

Finally, the distribution of axial strain along a line ~ 50 fxm from the interface 
within the intact ceramic layer opposite the crack (trajectory D in Fig. 4) is shown in 
Fig. 6 for two applied bending moments of 2 and 2.8 Nm. Here, the magnitude of the 
remote axial strains increased as a result of the increased remote load from 1.3 x 1(T4 

to 2 x 10"4, and the magnitude of the peak strain within the ceramic increased from 
5 x 1(T4 to 9 x 10 ~2, both approximately by a factor of two. 

1.41(T 
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Fig. 6. Distributions of longitudinal strain, E,,, VS distance from the crack plane, y, within the intact ceramic 
layer ahead of the crack for applied bending moments of 1.5 and 2 Nm. Both experimental measurements 

and numerical predictions are shown. 
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3.1.2. Flexural loading: finite element analysis. The laminate specimen examined 
by moire interferometry was modelled by finite element methods to allow direct 
comparison of the strain fields. The model geometry (dimensions and number of 
layers), material properties and boundary conditions were selected to agree with those 
of the specimens used for the moire experiments described in Section 3.1.1. Specifically, 
the elastic moduli of the two materials were incorporated into the analyses (Table 2). 
An elastic-perfectly plastic constitutive law was ascribed to the metal layers in the 
model, with yield stress, aY. In practice it is difficult to independently determine an 
appropriate value of aY for the aluminium layers used in the experiments of Section 
3.1.1. A value of aY was therefore chosen to provide the best fit with experimentally 
determined strain fields. A single crack in the outermost ceramic layer directly opposite 
the middle roller was introduced. The crack tip was extended into the metal layer to 
a distance of 1/40 of the metal thickness, hm, from the metal-ceramic interface with a 
finite crack tip radius of 1/40 hm [Fig.7(a)]. This choice of crack tip geometry was 
based on experimental observations of crack tip profiles [Fig. 7(b)]. 

Flexural loading was applied to the finite element model by imposing a point load 
at the position of the upper load point in a horizontal direction. The magnitudes of 
the loads were chosen to coincide with those used during the moire interferometry 
experiments. For each load level contour maps of the axial strain fields around the 
crack tip were determined. A typical contour map of the predicted axial strain is 
shown in Fig. 8 for an applied bending moment of 1.5 Nm and a metal yield strength 
of 50 MPa, which is typical ofthat for pure aluminium in the fully annealed condition 
as used experimentally (Appendix). The results indicate a localisation of axial strain 
near the tip of the precrack, with significant strain concentration extending in a 
direction perpendicular to the crack plane to a distance of several times the ceramic 
layer thickness. The strain distributions were determined along several different tra- 
jectories within this contour map. The results are compared with experimental dis- 
tributions of strain obtained by moire interferometry in Figs 4-7. Clearly, there is 
excellent agreement between the predicted and measured axial strain distributions. 
The agreement includes both the magnitudes of the strains and the distribution of 
strain around the crack tip at different loads. 

The good agreement between the experimental and predicted syy strain distributions 
in the layers near the tip of the crack (Figs 4-7) has several important implications. 
First, the assumption of a perfectly bonded interface must be valid. Second, plane 
strain conditions must be applicable. Third, the constitutive relationships of the 
materials, including an elastic-perfectly plastic response of the metal with a yield 
strength of 50 MPa appear to be well-represented. Finally, the crack tip geometrical 

Table 2. Proper ties of materials 

Material 
Young's modulus, E 

(GPa) 
Yield stress, <TY 

(MPa) Poisson's ratio, v 

Alumina 
Aluminium 

380 
70 50 

0.2 
0.3 
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Fig. 7. An example of the crack tip mesh used in the finite element analyses. A high magnification scanning 
electron micrograph of a crack tip in an A1/A1203 laminate after a single load-unload cycle is shown for 

comparison. 



Cracking patterns in metal-ceramic laminate 813 

Fig. 8. A contour map of the predicted distribution of strain, e„ 
localisation of strain. 

in the vicinity of the crack tip showing a 

boundary conditions imposed appear to constitute a good approximation in this case. 
These conclusions then enabled the application of this modelling approach to the 
analysis of the precracked laminate geometry. 

3.2.    Multiple crack geometry-remote tensile loading 

The distributions of stress near the cracks in the precracked geometry shown in 
Fig. 2(a) were investigated by finite element analysis using the unconstrained crack 
tip mesh geometry shown in Fig. 7(a). Tensile loads were applied by imposing a 
vertical displacement to the upper boundary of the model, which was constrained to 
remain straight. In other cases, the elastic crack tip displacement field was applied as 
a loading parameter by imposing the appropriate displacement boundary conditions 
to the perimeter of the precracked geometry. Stress components that were investigated 
included both the opening stress component, ayy, and the maximum principal stress, 
ai. The range of metal-ceramic layer thickness and precrack lengths used during the 
analyses are summarised in Table 3, whereas the material properties investigated were 

Table 3. Geometries of laminate microstructures analysed for 
fracture map 

Precrack length, a0/hc 1,2, 5,20, oo 
Metal-ceramic layer thickness ratio, hm/hc 1, 2, 4 
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the same as those for the flexural beam, except that now Young's modulus of both 
the ceramic and metal layers were assumed to be the same. For the analyses involving 
tensile loading, a range of remote tensile load, am, was applied, typically from 
0 < ax < 2<JY. Nodal displacements, strains and stresses were recorded at increments 

of 0.2 aY. 
In all cases, at low remote loads (e.g. ax ~ 0.2aY), the entire system remained 

elastic, with the exception of small regions of the metal located near the tips of the 
cracks that exhibited plastic yielding. However, as the level of remote load was raised, 
plastic yielding of layers Ml and M2 resulted in a change in the distribution of axial 
stress, ayy, around the cracks. In some cases, this resulted in the location of peak axial 
stress moving from layer Cl to layer C2. This effect has strong implications for the 

predicted fracture response of these materials, as elaborated below. 
An example of such a transition is shown in Fig. 9(a) and (b), where contour maps 

of the axial component of stress, ayy, obtained at two different loads {oJoY = 0.2 
and 1, respectively), are presented from a laminate with equal thickness metal and 
ceramic layers and a precrack length of five ceramic and four metal layer thicknesses. 
In Fig. 9(a), the maximum axial stress in layer C2 is only of the order of a\am ~ 1.2, 
whereas for layer Cl the maximum axial stress reaches at least a/a^ ~ 1.3. Therefore, 
provided the ceramic layers exhibit a deterministic strength and provided the next 
crack will form at this level of remote load (oJoY = 0.2), a multiple cracking response 
is predicted since the location of the maximum stress occurs in layer Cl. This might 
be expected to apply when the ratio of ceramic strength to metal flow stress is low 
(~ 1), for this layer thickness ratio and precrack length. 

However, raising the magnitude of the remote load, such that significant plastic 
deformation of the metal layers occurred, led to a major redistribution of axial stress 
around the crack tip. This may be seen in Fig. 9(b), where a contour map of the same 
region shown in Fig 9(a) is illustrated, but for a remote load aJaY ~ 1. In Fig. 9(b), 
the location of peak axial stress now occurs in layer C2, which experiences a peak 
axial stress in excess ofayy/ax = 2. In contrast, the maximum axial stress in layer Cl 
is only of the order of aja^ ~ 1.3. The fact that the peak stress now occurs in layer 
C2 implies that fracture at this level of remote load (aJoY ~ 1) would proceed by 
dominant, single cracking, rather than the multiple cracking response predicted for 
the same geometry but at the lower load {aJaY = 0.2). 

3.2.1. Yielding of the bridging metal layer. The observation that the location of 
peak axial stress depends on the ratio of the remote load to the yield stress of the 
metal is a direct result of plastic yielding of the bridging metal layer. Such yielding 
with increasing crack opening is well documented for constrained metal layers (Ban- 
nister and Ashby, 1991). Evidence of this phenomenon is shown in Fig. 10, which 
shows a plot of the average traction stress, T, at the crack plane, in layer Ml, against 
the average crack opening displacement, w. The value of T is defined by 

_      1 

hm 

CK, 
\yy(x,0)dx. (1) 

Two broad regimes of the stress-displacement response of the metal layer may be 
distinguished. In the first stage, the metal layer acts essentially as a linear spring, such 
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(a) 

(b) 

Fig. 9. Contour maps of the distributions of strain for a laminate containing equal thickness metal and 
ceramic layers and a normalised precrack of length of five. In (a), negligible plastic yielding has occurred, 
resulting in a maximum axial stress, a)y, occurring in layer Cl. In (b), extensive plastic yielding has resulted 

in a shift in location of peak axial stress to layer C2. 

that the increase in bridging traction is linear with average crack opening. In the 
second regime, however, significant plastic flow of the metal layer occurs and results 
in a sharp decrease in the rate of increase in bridging stress with crack opening. 
Furthermore, the magnitude of the normalised average crack opening displacement 
at which this transition occurs is dependent on the length of the precrack, a0: longer 
precracks tend to result in higher stresses within the metal layer. 

This effect, as well as the general observation of the bridging stress rising above the 
uniaxial yield stress, aY, results from the high degree of plastic constraint imposed on 
the metal layers near the crack tip. This effect, in turn, is well known, and results from 
the presence of the stiff ceramic that is well bonded to either side of the metal layer 
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Fig. 10. Plot of the normalised average bridging stress, T/aY, vs average crack opening, u/hm for several 
different precrack lengths. 

(Hill, 1950). As a result, the magnitude of the applied stress required to bring the 
metal layer to the point of plastic yielding is raised, relative to the case with no 
constraint. The observation that the bridging stress is lower for shorter precracks now 
can be explained. 

The high triaxiality near the crack tip results from transverse tensile stresses acting 
on the metal layer in directions parallel to the crack plane. These stresses originate 
(a) from the inability of the ceramic material on either side of the deforming metal 
layer near the crack tip to strain sufficiently in the x direction and (b) from the 
through thickness stresses generated by the plane strain condition. For materials with 
relatively short precracks, however, the magnitudes of the transverse, axx, stresses 
that can build up within the cracked ceramic material are limited by the proximity of 
the free surface, as compared to the case of longer precracks. This effect then leads to 
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a decrease in the magnitude of the crack tip hydrostatic stress and consequent attain- 
ment of yield within the metal layer at lower applied stress, i.e. smaller crack openings. 
Thus, the maximum axial stress that can be carried by bridging metal layers is lower 
in systems with short precracks. 

Yielding within layer Ml decreases the ratio of maximum wake stress to tip stress 
in two ways. First, the elastic contribution to the wake stress that arises from the 
surface tractions, T, is linearly related to the magnitude of the traction stress (Roark, 
1954). Once T reaches a maximum, a limit is placed upon the contribution to the 
wake stress from the corresponding traction on the crack flanks. Secondly, the crack 
tip stress intensity factor, as modified by the presence of the bridging metal layer is 
(Marshall et al, 1985) 

K^ = 2Tn o  V(l-X2) 
T(X)äX, (2) 

where X is the relative position along the crack flanks, X = x/a0. Therefore, if the 
magnitude of r decreases relative to ax, the increase in crack tip stress intensity factor 
will lead to an increase in the stress layer C2. Although (2) applies to semi-infinite 
half-space geometries with infinite cracks, these general trends should apply to the 
present situation. 

Yielding within layer M2 does not significantly reduce the stress layer in C2, 
consistent with the findings of earlier analyses (Chan et al, 1993). This conclusion 
was confirmed by comparing the results of an analysis with an elastic layer M2 
(ö-Y = oo) and elastic-plastic Ml, to those of a similar analysis with elastic-plastic 
layers Ml and M2. No significant change in the distribution of stress within layer C2 
was observed accompanying yielding of layer Ml, between the two cases. This result 
indicates that the transition in fracture behaviour results primarily from a plateau in 
crack wake stress due to yielding of metal layer Ml, as described above. 

4.    FRACTURE MAP FORMULATION 

The stress distributions obtained from the finite element analyses at different loads 
have been used to formulate a fracture map for the failure mode of the composites. 
The maximum stress in the wake (erg) and in front of the crack (a%) were determined 
first from the distributions of stress within the layers at different increments of remote 
load for each composite system. These maxima were then normalised by the yield 
stress of the metal, erY, and plotted against the normalised applied load (e.g. Fig. 11). 
In those cases when increasing the remote load caused the peak stress to shift from 
the crack wake to the region in front of the crack, the magnitude of the quantities 
were noted at this point (e.g. cr%/aY = crg/cy ~ 1.3 in Fig. 11). These values were then 
plotted as the ordinate of a fracture map, with the corresponding metal to ceramic 
layer thickness ratio as the abscissa (Fig. 12). 

This has the following physical interpretation: if the ratio of the fracture stress of 
the ceramic, erc, to the yield stress of the metal is fairly low (e.g. ac/aY < 0.7 in Fig. 
11), then the next crack that will form will do so when the level of the remote load is 
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Fig. 11. Plot of the normalised peak axial stress in layers Cl (crack wake) and C2 (crack tip) vs the 

normalised applied stress. 

such that insignificant yielding of the metal layer has occurred. Therefore, the appro- 
priate stress distribution to be analysed is that corresponding to a nearly elastic system 
[Fig. 9(a)]. However, if the cracking stress to metal yield stress ratio is higher (e.g. 
<XC/<TY > 0.7 in Fig. 11), then the remote load needed for further cracking is also 
higher, for given aY, leading to a change from wake to frontal cracking in some cases 
[Fig. 9(b)]. These results are summarised in Fig. 12, which shows the results obtained 
from several different cases with different metal layer thickness and precrack lengths. 
Furthermore, this conclusion was valid if either the a, or ayy component of stress was 
considered; there was less than 5% difference in the critical ratio of ac/aY for either 
stress component. 
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Fig. 12. Map of the predicted fracture mode for multilayers with different ratios of layer thickness and 
ceramic cracking stress to metal yield stress, OC/(TY. 

It should be noted, however, that for laminates containing a precrack of length 
equal to one ceramic layer thickness, the location of maximum stress always occurred 
in the intact ceramic layer ahead of the crack tip, regardless of the level of remote 
load. In no instance was the maximum stress found to occur in the ceramic layer that 
already contained the crack. Therefore, in systems that do not contain a precrack of 
significant length, i.e. one that spans several layers, dominant cracking is the predicted 
failure mechanism. This prediction was found to apply to systems with the three layer 
thickness ratios that were investigated (1 < hm/hc < 4). 
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Comparison of the predicted fracture mode with experiment indicated good agree- 
ment for systems with long precracks and low and high metal volume fractions, and 
for systems with short precracks and low metal volume fractions but the prediction 
of an incorrect failure mode for systems with short precracks and high metal volume 
fractions. This can be seen in Fig. 12 where experimentally observed fracture modes 
(Shaw et al., 1993; Pateras et al, 1995) are included on the fracture diagram. Although 
the reasons for this discrepancy are not yet clear, it may be a consequence of the 
stochastic nature of brittle fracture. Further work to clarify this point is in progress 
(Shaw, 1995). Furthermore, these predictions for the mechanism boundary obtained 
by the finite element method differ from that identified by an elastic-plastic shear lag 
approach (Fig. 12) (Huang and Zhang 1995). The present analysis indicated that 
multiple cracking in systems with precracks of finite length will occur over a smaller 
range of layer thickness ratios. The cause of this discrepancy is not clear, although 
most likely arises in the different approaches used to conduct the analyses. This trend, 
however, is consistent with the general conclusion of the present investigation that 
wake stresses are decreased as a result of finite crack lengths, leading to a propensity 
towards dominant cracking. 

5.    CONCLUSIONS 

A finite element model has been developed for investigating the fracture of ceramic- 
metal laminates. Moire interferometry was used to investigate experimentally the 
distribution of strain surrounding cracks in aluminium/alumina laminates. Good 
agreement has been observed between the predicted and experimentally observed 
crack-tip strain fields. The finite element calculations were used to predict the fracture 
sequence of laminate specimens with precracks of varying lengths. These results have 
been used to develop a fracture map for prediction of the cracking patterns as a 
function of layer thickness, initial crack length and the ratio of ceramic strength to 
metal yield stress, OC/<TY. We find that fracture will tend to occur by dominant cracking 
for materials with relatively high ratios of ac/aY. Experimental observations of crack 
patterns are in partial agreement with this prediction, although multiple cracking 
patterns have been observed at lower metal contents than predicted. 
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APPENDIX: MOIRE INTERFEROMETRY EXPERIMENTAL 
PROCEDURE 

Bulk specimens were prepared by vacuum diffusion bonding stacks of commercially available 
aluminaf and aluminiumj sheets. The sheets were cleaned with acetone prior to bonding. 
Diffusion bonding was conducted in a vacuum of ~ 10"5 Torr using an applied pressure of ~ 5 
MPa at a temperature of 610°C for a time of 4 h. Beam specimens for the moire interferometry 
experiments were cut from the diffusion bonded specimens using a water-cooled diamond 
abrasive cut-off saw. The dimensions of the beam were ~ 5 x h x 100 mm, where h depended 
on the metal layer thickness (Table 1). One side of the beams was polished using diamond 
metallographic compounds and a linear diffraction grating with 1200 lines/mm was reproduced 
on this side surface using epoxy resin. Three-point flexural testing of the laminate beams was 
conducted in displacement control. Loads were measured using an Entran 1 kN load cell with 
a load resolution of 1.8 N. 

The surface strain states of the laminates were monitored during the experiment using moire 
interferometry (Post, 1987). Two-beam interferometry was used with a 632 nm wavelength 
HeNe laser and an output power of 30 mW. This arrangement yielded moire interferographs 
with a displacement sensitivity of 0.42 /mi/fringe, with a possible strain resolution of ~ 10"5. 
A typical experiment involved incrementally increasing the displacement of the loading points, 
followed by a pause during which the load was recorded and the interferographs were exposed 
and developed. The interferographs were digitised and the longitudinal fringe spacing, L0(y), 
were determined from the digitised images along longitudinal trajectories of interest using the 
public domain NIH Image program (Rasband, 1995). These fringe spacing were then used to 
calculate the longitudinal strains (sy)) (Post, 1987) 

£«O0=i' (A.1) 

where v = the number of lines/mm in the diffraction grating. 

t Hoescht alumina. 
J Johnson-Matthey 99.999% aluminium. 
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This volume contains the texts often keynote lectures of the Engineering Foundation 
Conference on Mechanics and Physics of Layered and Graded Materials, held in 
Davos, Switzerland, 21-25 August 1995. A discussion session at the end of the 
Conference provided a perspective on the current state of the subject and key issues 
for further investigation. It is that discussion that we summarize here. 

The interest in the subject stems from the fact that mechanical properties of multi- 
phase materials are, to a large extent, determined by the deformation and failure 
mechanisms at the interfaces. There is, therefore, great interest in controlling interface 
behavior by layering and grading of composition-microstructure. Current or potential 
engineering applications include case-hardening of steels for tribological protection, 
thermally-sprayed zirconia-metal graded coatings for thermal-barrier protection in 
ground-vehicle engines, and SiGe and InGaAs graded layers in microelectronics and 
optoelectronics. 

What can be gained by grading interfaces? In semiconductors, synthesized by any 
of several physical or chemical vapor deposition techniques, grading can be used to 
control the population, distribution or kinetics of misfit and threading dislocations 
in heteroepitaxial structures. Graded interfaces can significantly reduce the stress 
concentrations that arise from the mismatch in mechanical properties across an 
interface, thereby improving the tolerance to the onset of cracking. Compositional 
gradation can also be used to markedly alleviate the spread of plastic flow in ductile 
layers. Similarly, a compositionally graded interlayer between solids with a large 
thermal expansion mismatch smooths the distribution of thermal stresses across the 
thickness of the layer and can be used to diminish the magnitude of thermal stresses 
at critical locations. Indeed, an interface with a gradual change in composition is 
sometimes essential for maintaining the mechanical integrity of the joint between 
dissimilar solids, e.g. metals and ceramics, in the presence of large fluctuations in 
temperature, provided that the microstructure of the graded interface is thermally 
stable. 
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In order to guide the design of graded interfaces so that their potential benefits are 
fully realized, a basic understanding of the mechanics and physics of deformation and 
transport processes in graded structures is needed. 

When the range of possible applications is considered, the issue of size scale becomes 
immediately apparent. The operative mechanisms can be very different when the 
interface extends over nanometers from when the interface extends over tens of 
micrometers. Indeed, the characterization of graded and layered systems necessarily 
involves parameters that have a characteristic dimension of length including, for 
example, quantities such as the modulus gradient, the thermal conductivity gradient, 
the fracture toughness and a Burgers vector associated with the misfit dislocations. 
Ratios of surface energy and surface stress to the volumetric stored energy provide 
additional length parameters. From these, a variety of characteristic lengths can be 
constructed, e.g. the Burgers vector divided by plastic strain, surface energy divided 
by elastic mismatch energy, fracture toughness divided by modulus gradient to the 
three halves power and thermal conductivity gradient divided by the average thermal 
conductivity. It is the ratio of layer thickness, curvature and size of microstructural 
features to these characteristic lengths that determines regimes of behavior. The 
appropriate framework, continuum or atomistic, for modeling will depend on which 
regime plays the dominant role in determining behavior. At any size scale, a question 
of interest is how small, relative to the total interface thickness, stepwise variations 
have to be before they have the advantages of a smooth variation, because processing 
almost inevitably gives rise to a layered rather than a graded structure. 

When characteristic lengths are small, of the order of 1-100 nm, as they are in 
many systems of technological importance, the characterization of basic properties 
can be quite different from that of corresponding bulk materials, and provides chal- 
lenges for both theory and experiment. For example, experimental characterizations of 
the wavelength of internal stresses, of interface roughness, of elastic-plastic transition 
mechanisms and of the development of texture in circumstances where the usual 
choices of slip systems are not appropriate are needed. Understanding the basic 
atomic and electronic structure at the interface between very dissimilar phases is 
one basic challenge for theory. Thermodynamic properties, such as solubilities and 
segregation, on a size scale of 10 nm and smaller are another challenge. A further set 
of fundamental questions concerns stability, both chemical and morphological, of 
layered and graded structures. There is also the potentially strong effect of a high 
interfacial area on atomic transport or creep. 

Consideration of plasticity in thin layers poses special challenges. Are the defor- 
mation modes the same as in bulk samples or does the size scale of the layers, together 
with the increased surface to volume ratio, bring new deformation mechanisms into 
play? What sort of constitutive relations are appropriate for characterizing plasticity 
on this scale? Do the high internal stresses that arise from thermal mismatch strains 
that occur during processing lead to slip taking place in a regime that is not ordinarily 
encountered in bulk materials, for example, the regime where pressure effects on 
dislocation motion play a significant role? How does the micro structure of such 
materials evolve during fabrication or during plastic flow? 

Fundamental issues remain concerning the characterization of toughness for solids 
with layered and graded interfaces. In particular, the design of experiments to obtain 
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the relevant and "valid" fracture parameters, which unambiguously describe the 
"intrinsic" resistance of the layered structure to fracture over a broad range of mode 
mixities and monotonic and cyclic variations in stress-temperature gradients, poses a 
basic challenge. 

It is hoped that the conference itself, and the timely publication of these proceedings, 
will serve to stimulate further research and discussion on the behavior of layered and 
graded materials, an area which is rich in both scientific research opportunities and 
technological potential. 


